参考文献/References:
[1] Tsai K C, Lai J W, Hwang Y C, et al. Research and application of double-core buckling restrained braces in Taiwan[C]//Proceeding of the 13th World Conference on Earthquake Engineering. Vancouver, BC, Canada, 2004, 2179: 1-15.
[2] Nakamura H,Maeda Y,Sasaki T, et al. Fatigue properties of practical scale unbonded braces[J]. Nippon Steel Technical Report,2000,82: 51-57.
[3] Building Seismic Safety Council. FEMA 450 NEHRP Recommended provision for seismic regulations for new buildings and other structures [R]. Washington, DC,USA: Building Seismic Safety Council, 2004.
[4] Fahnestock L A, Sause R, Ricles J M, et al. Ductility demands on buckling-restrained braced frames under earthquake loading[J]. Earthquake Engineering and Engineering Vibration, 2003, 2(2): 255-268. DOI:10.1007/s11803-003-0009-5.
[5] AISC. Seismic provisions for structural steel buildings[R]. Chicago, Illinois,USA: AISC, 2010.
[6] Chen X, Ge H, Usami T. Seismic demand of buckling-restrained braces installed in steel arch bridges under repeated earthquakes[J]. Journal of Earthquake and Tsunami, 2011, 5(2): 119-150. DOI:10.1142/s1793431111000942.
[7] 黄卿.全组装式屈曲约束支撑低周疲劳性能及抗震需求分析[D]. 南京: 东南大学土木工程学院, 2013.
[8] Wu Jing, Liang Renjie, Wang Chunlin, et al. Restrained buckling behavior of core component in buckling-restrained braces[J]. Advanced Steel Construction, 2012, 8(3): 212-225.
[9] 马宁. 全钢防屈曲支撑及其钢框架结构抗震性能与设计方法[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2010.
[10] 高向宇, 张惠,杜海燕, 等.组合热轧角钢方屈曲支撑构造及抗震试验[J]. 北京工业大学学报, 2008, 34(5): 498-503.
Gao Xiangyu, Zhang Hui, Du Haiyan, et al. Experiment on conformation and seismic performance of buckling-restrained brace made of composed hot-rolled angle steel [J].Journal of Beijing University of Technology, 2008, 34(5): 498-503.(in Chinese)
[11] 黄波, 陈泉, 李涛, 等. 国标Q235钢屈曲约束支撑低周疲劳试验研究[J]. 土木工程学报, 2013,46(6):29-34.
Huang Bo, Chen Quan, Li Tao, et al. Low-cycle fatigue test of Q235 steel buckling-restrained braces[J]. China Civil Engineering Journal, 2013,46(6):29-34.(in Chinese)
[12] Wang C L, Usami T, Funayama J. Improving low-cycle fatigue performance of high-performance buckling-restrained braces by toe-finished method[J]. Journal of Earthquake Engineering, 2012, 16(8): 1248-1268. DOI:10.1080/13632469.2012.703385.
[13] 郭立行, 吴京. 铸造十字形截面屈曲约束支撑的抗震性能试验研究[J]. 建筑钢结构进展, 2016, 18(3): 10-17. DOI:10.13969/j.cnki.cn31-1893.2016.03.002.
Guo Lihang, Wu Jing. Experimental study on the seismic performance of casting cruciform-shaped buckling-restrained brace[J]. Progress in Steel Building Structures, 2016, 18(3): 10-17. DOI:10.13969/j.cnki.cn31-1893.2016.03.002. (in Chinese)
[14] 中国钢铁工业协会. GB/T 228.1—2010金属材料拉伸试验第1部分: 室温试验方法[S]. 北京:中国标准出版社, 2010.
[15] 黄波. 高性能屈曲约束支撑低周疲劳性能及抗震需求分析[D]. 南京: 东南大学土木工程学院, 2012.
[16] Chopra A K. 结构动力学理论及其在地震工程中的应用[M]. 谢礼立,等译. 北京:高等教育出版社, 2005:73-74.
相似文献/References:
[1]谢钦,周臻,孟少平,等.SMA预拉杆式自定心屈曲约束支撑的滞回性能分析[J].东南大学学报(自然科学版),2014,44(4):799.[doi:10.3969/j.issn.1001-0505.2014.04.021]
Xie Qin,Zhou Zhen,Meng Shaoping,et al.Hysteretic performance analysis of self-centering buckling-restrained braces with pretensioned SMA tendons[J].Journal of Southeast University (Natural Science Edition),2014,44(4):799.[doi:10.3969/j.issn.1001-0505.2014.04.021]