参考文献/References:
[1] Sossin A, Rebuffel V, Tabary J, et al. A novel scatter separation method for multi-energy X-ray imaging[J]. Physics in Medicine & Biology, 2016, 61(12):4711-4728. DOI:10.1088/0031-9155/61/12/4711.
[2] Lee S W, Choi Y N, Cho H M, et al. A Monte Carlo simulation study of the effect of energy windows in computed tomography images based on an energy-resolved photon counting detector[J]. Physics in Medicine & Biology, 2012, 57(15):4931-4949. DOI:10.1088/0031-9155/57/15/4931.
[3] Schmidt T G. CT energy weighting in the presence of scatter and limited energy resolution[J]. Medical Physics, 2010, 37(3):1056-1067. DOI:10.1118/1.3301615.
[4] Schmidt T G. Optimal “image-based” weighting for energy-resolved CT[J]. Medical Physics, 2009, 36(7):3018-3027. DOI:10.1118/1.3148535.
[5] Kalluri K S, Mahd M, Glick S J. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT[J]. Medical Physics, 2013, 40(8):081923. DOI:10.1118/1.4813901.
[6] Berglund J, Johansson H, Maack H I, et al. Energy weighting improves the image quality of spectral mammograms: Implementation on a photon-counting mammography system[C]//SPIE Medical Imaging. San Diego, CA, USA, 2014:90331. DOI:10.1117/12.2042238.
[7] Choi Y N, Lee Y J, Kim H J. The effect of energy weighting on X-ray imaging based on photon counting detector: A Monte Carlo simulation[J]. Proceeding of SPIE, 2012, 8313(2):193. DOI:10.1117/12.910845.
[8] Rupcich F, Gilat-Schmidt T. Experimental study of optimal energy weighting in energy-resolved CT using a CZT detector[C]//SPIE Medical Imaging. Lake Buena Vista, Florida, USA, 2013:303-311. DOI:10.1117/12.2008439.
[9] Lee Y, Lee S, Kim H J. Comparison of spectral CT imaging methods based a photon-counting detector: Experimental study[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 815: 68-74. DOI:10.1016/j.nima.2016.01.069.
[10] Ansari A, Danyali H, Helfroush M S. HS remote sensing image restoration using fusion with MS images by EM algorithm[J]. IET Signal Processing, 2017, 11(1): 95-103. DOI:10.1049/iet-spr.2016.0141.
[11] Helin T, Burger M. Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems[J]. Inverse Problems, 2015, 31(8): 085009. DOI:10.1088/0266-5611/31/8/085009.
[12] Punnoose J, Xu J, Sisniega A, et al. Technical note: Spektr 3.0—A computational tool for X-ray spectrum modeling and analysis[J]. Medical Physics, 2016, 43(8):4711-4717. DOI:10.1118/1.4955438.
[13] Caldeira L, Scheins J J, Almeida P, et al. Maximum a posteriori reconstruction using PRESTO and PET/MR data acquired simultaneously with the 3TMR-BrainPET[J]. Nuclear Science Symposium Conference Record, 2010, 612(3):2879-2884. DOI:10.1109/nssmic.2010.5874322.
[14] Chen Y, Ma J, Feng Q, et al. Nonlocal prior Bayesian tomographic reconstruction[J]. Journal of Mathematical Imaging and Vision, 2008, 30(2):133-146. DOI:10.1007/s10851-007-0042-5.
[15] 刘祎, 桂志国, 张权, 等. 一种基于指数型先验分布的正电子发射断层图像重建算法[J]. 中国组织工程研究与临床康复, 2010, 14(52): 9760-9763. DOI:10.3969/j.issn.1673-8225.2010.52.018.
Liu Yi, Gui Zhiguo, Zhang Quan, et al. Positron emission tomography image reconstruction algorithm based on an exponential Markov random field prior model[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(52): 9760-9763. DOI:10.3969/j.issn.1673-8225.2010.52.018. (in Chinese)