# [1]徐刚,李爱群.空腔剪力墙受力机理的理论与数值分析[J].东南大学学报(自然科学版),2017,47(5):987-992.[doi:10.3969/j.issn.1001-0505.2017.05.023] 　Xu Gang,Li Aiqun.Theoretical and numerical analysis on stress mechanism of cavity shear wall[J].Journal of Southeast University (Natural Science Edition),2017,47(5):987-992.[doi:10.3969/j.issn.1001-0505.2017.05.023] 点击复制 空腔剪力墙受力机理的理论与数值分析() 分享到： var jiathis_config = { data_track_clickback: true };

47

2017年第5期

987-992

2017-09-20

## 文章信息/Info

Title:
Theoretical and numerical analysis on stress mechanism of cavity shear wall

1东南大学土木工程学院, 南京 210096; 2北京建筑大学土木与交通工程学院, 北京 100044
Author(s):
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Keywords:

TU973
DOI:
10.3969/j.issn.1001-0505.2017.05.023

Abstract:
To improve the aseismic performance of the shear wall with the low aspect ratio, a cavity shear wall was designed. The difference of the mechanical characteristics among the common shear wall, the shear wall with concealed vertical joint and the cavity shear wall under the lateral loads was analyzed. The theoretical calculation model of the cavity shear wall was built. The calculation formulas of the equivalent lateral stiffness and the internal force of the cavity shear wall under lateral loads were deduced. The parameters influencing the stiffness of the cavity shear wall were discussed, and the influence rule of each parameter was studied. The results show that the stiffness and the bearing capacity of the cavity shear wall is reduced and the ductility are improved. The reasonable matching among the stiffness, the bearing capacity and the ductility can be realized by changing the parameters of the cavity. The verification results of the models with different parameters show that the errors of the theoretical calculation formulas are less than 15%, which can meet the needs of engineering estimation. For the cavity shear wall, by changing the length and the thickness of the cavity reasonably, both the weight and the stiffness can be significantly reduced so as to reduce the seismic action.

## 参考文献/References:

[1] Peng Y Y, Qian J R, Wang Y H. Cyclic performance of precast concrete shear walls with a mortar-sleeve connection for longitudinal steel bars[J]. Materials and Structures, 2015, 49(6): 2455-2469. DOI:10.1617/s11527-015-0660-0.
[2] 武藤清. 结构物动力设计[M]. 滕家禄,等译. 北京:中国建筑工业出版社, 1984: 87-92.
[3] 唐兴荣, 蒋永生, 丁大钧. 一种新型低剪力墙的试验研究[J]. 东南大学学报(自然科学版), 1994, 24(3): 53-58. DOI: 10.3969/j.issn.1001-0505.1994.03.009
Tang Xingrong, Jiang Yongsheng, Ding Dajun. Experimental study on a new type of low-rise concrete shear wall[J]. Journal of Southeast University(Natural Science Edition), 1994, 24(3): 53-58. DOI:10.3969/j.issn.1001-0505.1994.03.009. (in Chinese)
[4] 王尧鸿, 吴定燕, 许淑芳. 带缝空心RC剪力墙墙板及房屋模型刚度退化研究[J]. 工程抗震与加固改造, 2016, 38(5): 21-26. DOI:10.16226/j.issn.1002-8412.2016.05.004.
Wang Yaohong, Wu Dingyan, Xu Shufang. Study on stiffness degradation of wallboard and building models of RC hollow shear wall with seams[J]. Earthquake Resistant Engineering and Retrofitting, 2016, 38(5): 21-26. DOI:10.16226/j.issn.1002-8412.2016.05.004. (in Chinese)
[5] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59-67,82.
Nie Jianguo, Wang Yuhang. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Engineering Mechanics, 2013, 30(4): 59-67,82.(in Chinese)
[6] 刘巍, 徐明, 陈忠范. ABAQUS混凝土损伤塑性模型参数标定及验证[J]. 工业建筑, 2014, 44(S1): 167-171,213.
Liu Wei, Xu Ming, Chen Zhongfan. Parameters calibration and verification of concrete damage plasticity model of ABAQUS[J]. Industrial Construction, 2014, 44(S1): 167-171,213.(in Chinese)
[7] 李伟琛, 韩小雷, 崔济东. 基于试验的ABAQUS混凝土塑性损伤参数取值方法[J]. 结构工程师, 2016, 32(2): 64-69. DOI:10.3969/j.issn.1005-0159.2016.02.011.
Li Weichen, Han Xiaolei, Cui Jidong. Determination of damage parameter of ABAQUS CDP model based on test data[J]. Structural Engineers, 2016, 32(2): 64-69. DOI:10.3969/j.issn.1005-0159.2016.02.011. (in Chinese)
[8] Park R. Evaluation of ductility of structures and structural assemblages from laboratory testing[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1989, 22(3):155-166.
[9] Coull A, Puri R D. Analysis of coupled shear walls of variable thickness[J]. Building Science, 1967, 2(2): 181-188. DOI:10.1016/0007-3628(67)90018-7.
[10] 吕西林. 高层建筑结构[M]. 武汉: 武汉理工大学出版社, 2011: 88-98.

## 相似文献/References:

[1]吴函恒,周天华,吕晶.钢框架-装配式混凝土抗侧力墙板结构受力性能[J].东南大学学报(自然科学版),2016,46(1):118.[doi:10.3969/j.issn.1001-0505.2016.01.020]
Wu Hanheng,Zhou Tianhua,Lü Jing.Mechanical behavior of steel frame-fabricated concrete lateral force resisting wall structures[J].Journal of Southeast University (Natural Science Edition),2016,46(5):118.[doi:10.3969/j.issn.1001-0505.2016.01.020]