[1]宋晓勤,刘叶,金慧,等.一种用于OFDMA认知网络的低复杂度资源分配算法[J].东南大学学报(自然科学版),2017,47(6):1123-1128.[doi:10.3969/j.issn.1001-0505.2017.06.007]
 Song Xiaoqin,Liu Ye,Jin Hui,et al.A low-complexity resource allocation algorithm for OFDMA cognitive networks[J].Journal of Southeast University (Natural Science Edition),2017,47(6):1123-1128.[doi:10.3969/j.issn.1001-0505.2017.06.007]
点击复制

一种用于OFDMA认知网络的低复杂度资源分配算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第6期
页码:
1123-1128
栏目:
信息与通信工程
出版日期:
2017-11-20

文章信息/Info

Title:
A low-complexity resource allocation algorithm for OFDMA cognitive networks
作者:
宋晓勤1刘叶1金慧1雷磊1胡静2宋铁成2
1南京航空航天大学电子信息工程学院, 南京 211106; 2东南大学信息科学与工程学院, 南京 210096
Author(s):
Song Xiaoqin1 Liu Ye1 Jin Hui1 Lei Lei1 Hu Jing2 Song Tiecheng2
1College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2School of Information Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
OFDMA 子载波分配 功率分配 用户吞吐量
Keywords:
orthogonal frequency division multiple access(OFDMA) subcarrier allocation power allocation user throughput
分类号:
TN914.5
DOI:
10.3969/j.issn.1001-0505.2017.06.007
摘要:
针对功率受限的多用户正交频分多址接入(OFDMA)认知网络,提出了一种低复杂度的资源分配算法,包括子载波和功率分配.在子载波分配中,选取包含最差信道质量的子载波优先分配给用户,再将剩余的子载波信道质量值按方差的降序分配给用户,避免了最后未被分配的子载波恰好只能分配给对应信道质量最差用户的情况发生;在功率分配时,在传统线性注水算法的基础上增加了对主用户抗干扰阈值的判断,在最大化次用户吞吐量的同时,提高了主用户的抗干扰能力.仿真结果表明,与已有算法相比,该算法能够有效提升分配给用户的最差子载波信道质量,在用户吞吐量上接近于传统线性注水算法的性能上限,具有良好的主用户公平性,且计算复杂度低.
Abstract:
For the power-limited orthogonal frequency division multiple access(OFDMA)cognitive networks, a low-complexity resource allocation algorithm is proposed, including subcarrier allocation and power allocation. In the subcarrier allocation, the algorithm assigns the subcarriers with the worst channel quality to the users at a higher priority. Then, the remaining subcarriers are sorted in descending order according to the variance of channel quality and assigned to the users. Thus, the remaining subcarriers will not be allocated to the users with the worst channel quality. In the power allocation, the judgment of the anti-interference threshold of the primary user is introduced into the traditional linear water-filling algorithm. This algorithm can maximize the throughput of secondary users and improve the anti-interference ability of the primary user simultaneously. The simulation results show that, compared with the existing algorithms, the proposed algorithm can effectively improve the channel quality for the subcarriers allocated to users. The throughput of secondary users is very close to the theoretical upper bound. The proposed algorithm has an acceptable fairness for primary users and low computational complexity.

参考文献/References:

[1] Tanab M E, Hamouda W. Resource allocation for underlay cognitive radio networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 1249-1276. DOI: 10.1109/comst. 2016. 2631079.
[2] Tsiropoulos G I, Dobre O A, Ahmed M H, et al. Radio resource allocation techniques for efficient spectrum access in cognitive radio networks[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 824-847. DOI: 10.1109/comst. 2014. 2362796.
[3] Yang Y, Park L T, Mandayam N B, et al. Prospect pricing in cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2015, 1(1): 56-70. DOI: 10.1109/tccn. 015.2488636.
[4] Alfa A S, Maharaj B T, Lall S, et al. Mixed-integer programming based techniques for resource allocation in underlay cognitive radio networks: A survey[J]. Journal of Communications and Networks, 2016, 18(5): 744-761. DOI: 10.1109/jcn.2016.000104.
[5] Hu H, Zhang H, Liang Y C. On the spectrum- and energy-efficiency tradeoff in cognitive radio networks[J]. IEEE Transactions on Communications, 2016, 64(2): 490-501. DOI: 10.1109/tcomm.2015.2505281.
[6] Mokari N, Parsaeefard S, Azmi P, et al. Robust ergodic uplink resource allocation in underlay OFDMA cognitive radio networks[J]. IEEE Transactions on Mobile Computing, 2016, 15(2): 419-431. DOI: 10.1109/tmc.2015.2413782.
[7] Zhou F, Beaulieu N C, Li Z, et al. Energy-efficient optimal power allocation for fading cognitive radio channels: Ergodic capacity, outage capacity, and minimum-rate capacity[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2741-2755. DOI: 10.1109/twc. 015. 2509069.
[8] Chopra S, Notarstefano G, Rice M, et al. Distributed version of the Hungarian method for a multirobot assignment[J]. IEEE Transactions on Robotics, 2017, 99: 1-16. DOI: 10.1109/tro.2017.2693377.
[9] Fahmi A, Astuti R P, Meylani L, et al. Utilizing mean greedy algorithm using user grouping for chunk allocation in OFDMA systems with carrier aggregation[C]//2015 9th International Conference on Telecommunication Systems Services and Applications(TSSA). Bandung, Indonesia, 2015: 1-4. DOI: 10.1109/tssa. 2015. 7440438.
[10] Basaran S T, Kurt G K, Engin B, et al. Joint power and subcarrier allocation in OFDMA systems[C]//2015 23rd Signal Processing and Communications Applications Conference(SIU). Malatya, Turkey, 2015: 2170-2173. DOI: 10.1109/siu.2015.7130303.
[11] Nam C, Joo C, Bahk S. Joint subcarrier assignment and power allocation in full-duplex OFDMA networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(6): 3108-3119. DOI: 10.1109/twc.2015.2401566.
[12] Yin S, Qu Z. Resource allocation in multiuser OFDM systems with wireless information and power transfer[J]. IEEE Communications Letters, 2016, 20(3): 594-597. DOI: 10.1109/lcomm. 2016.2516999.
[13] Sboui L, Rezki Z, Alouini M S. Energy-efficient power allocation for underlay cognitive radio systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2016, 1(3): 273-283. DOI: 10.1109/tccn.2015.2488622.
[14] Rawat D B, Bajracharya C. Channel and power adaptation for cognitive radios in multiuser OFDM systems[C]//2016 IEEE Radio and Wireless Symposium(RWS). Austin, TX, USA, 2016:129-132. DOI: 10.1109/rws. 2016. 7444384.
[15] Liu F, Yang Q, Gong P, et al. Subcarrier and power allocation for multi-user OFDMA wireless networks under imperfect channel state information[J]. IET Communications, 2016, 10(8): 873-881. DOI: 10.1049/iet-com.2015.0711.
[16] Araniti G, Condoluci M, Iera A, et al. A low-complexity resource allocation algorithm for multicast service delivery in OFDMA networks[J]. IEEE Transactions on Broadcasting, 2014, 60(2): 358-369. DOI: 10.1109/tbc. 2014. 2321678.
[17] Chen Y, Zheng Z, Li Y, et al. Energy-efficient resource allocation in multiuser OFDM systems with proportional rate constraints[J]. Electronics Letters, 2015, 51(20): 1611-1613. DOI: 10.1049/el.2015.2111.
[18] Zhang D M. Linear water-filling power allocation algorithm in OFDMA system[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1286-1289.
[19] Liu T, Yang C, Yang L L. A low-complexity subcarrier-power allocation scheme for frequency-division multiple-access systems[J]. IEEE Transactions on Wireless Communications, 2010, 9(5): 1564-1570. DOI: 10.1109/twc. 2010. 5463212.

备注/Memo

备注/Memo:
收稿日期: 2017-06-05.
作者简介: 宋晓勤(1973—),女,博士,副教授,xiaoqin.song@163.com.
基金项目: 国家自然科学基金资助项目(61372104,61572254)、研究生创新基地(实验室)开放基金资助项目(kfjj20170402).
引用本文: 宋晓勤,刘叶,金慧,等.一种用于OFDMA认知网络的低复杂度资源分配算法[J].东南大学学报(自然科学版),2017,47(6):1123-1128. DOI:10.3969/j.issn.1001-0505.2017.06.007.
更新日期/Last Update: 2017-11-20