[1]王辉,李蕾,曹羡,等.土壤微生物燃料电池在不同条件下的产电性能及微生物群落结构分析[J].东南大学学报(自然科学版),2017,47(6):1141-1147.[doi:10.3969/j.issn.1001-0505.2017.06.010]
 Wang Hui,Li Lei,Cao Xian,et al.Performance of soil microbial fuel cells under different conditions and analysis on associated microbial communities[J].Journal of Southeast University (Natural Science Edition),2017,47(6):1141-1147.[doi:10.3969/j.issn.1001-0505.2017.06.010]
点击复制

土壤微生物燃料电池在不同条件下的产电性能及微生物群落结构分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第6期
页码:
1141-1147
栏目:
电气工程
出版日期:
2017-11-20

文章信息/Info

Title:
Performance of soil microbial fuel cells under different conditions and analysis on associated microbial communities
作者:
王辉李蕾曹羡方舟李先宁
东南大学能源与环境学院, 南京 210096
Author(s):
Wang Hui Li Lei Cao Xian Fang Zhou Li Xianning
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
微生物燃料电池 电极间距 外接电阻 微生物群落结构
Keywords:
microbial fuel cell electrode spacing external resistance microbial community structure
分类号:
TM911.45
DOI:
10.3969/j.issn.1001-0505.2017.06.010
摘要:
通过构建一种新型的无膜单室土壤微生物燃料电池(MFC),考察了电极间距和外接电阻对土壤MFC产电性能的影响,并对阳极微生物群落结构进行分析.研究结果表明,电极间距和外接电阻对土壤MFC的输出电压和最大功率密度有显著的影响.当间距从4 cm增大到12 cm时,土壤MFC的输出电压、最大功率密度呈现出先升高后降低的趋势;阴极淹没在1 cm水层以下时,其输出电压显著降低至30 mV左右,最大功率密度为4.67 mW/m2;外接电阻从300 Ω增大到2 000 Ω时,土壤MFC的输出电压从80 mV增大到了330 mV,最大功率密度从14.33 mW/m2增大到了60.40 mW/m2.电极间距的增加或外接电阻的增大对阳极电势有显著影响,而阴极电势并没有发生差异性变化.通过高通量测序分析发现,土壤MFC和开路对照组中的阳极微生物群落结构存在显著差异.产电菌Deltaproteobacteria,DesulfuromonadalesGeobacteraceae在土壤MFC中是优势种群,其中Deltaproteobacteria的相对丰度高达24.91%,DesulfuromonadalesGeobacteraceae的相对丰度也远高于开路对照组.
Abstract:
A membrane-less and single-chamber soil microbial fuel cell(MFC)was constructed. The influences of the electrode spacing and the external resistance in soil MFCs on electricity generation were analyzed, and the associated microorganisms in the anode were investigated. The results show that the voltage and the maximum power density are first increased and then decreased with the electrode spacing ranging from 4 cm to 12 cm. However, the minimum voltage and power density are 30 mV and 4.67 mW/m2 when the cathode is submerged below 1 cm water. The voltage and the maximum power density are ranging from 80 to 330 mV and 14.33 to 60.40 mW/m2 when the external resistance is from 300 to 2 000 Ω. The anode potential decreases significantly with the reducing electrode spacing or increasing external resistance while the cathode potential is not remarkable variation. In addition, the microbial community analysis demonstrates that there is significant difference between the soil MFCs and control group in the relative abundance. Proteobacteria, especially Deltaproteobacteria as an electrogenic bacterium, is extremely abundant(24.91%)on soil MFC anode. Furthermore, the relative abundance of the other two bacteria, Desulfuromonadales and Geobacteraceae is also higher than that in the control group.

参考文献/References:

[1] Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells: Methodology and technology[J]. Environ Sci Technol, 2006,40(17):5181-5192. DOI:10.1021/es0605016.
[2] Hamdan H Z, Salama D A, Hari A R, et al. Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities[J]. Sci Total Environ, 2017,575:1453-1461. DOI:10.1016/j.scitotenv.2016.09.232.
[3] Wang H, Yi S Y, Cao X, et al. Reductive dechlorination of hexachlorobenzene subjected to several conditions in a bioelectrochemical system[J]. Ecotoxicol Environ Saf, 2017,139:172-178. DOI:10.1016/j.ecoenv.2017.01.039.
[4] Cao X, Song H L, Yu C Y, et al. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell[J]. Bioresour Technol, 2015,189:87-93. DOI:10.1016/j.biortech.2015.03.148.
[5] 梁敏, 陶虎春, 李绍峰,等. 剩余污泥为底物的微生物燃料电池处理含铜废水[J]. 环境科学, 2011,32(1):179-185.
  Liang Min, Tao Huchun, Li Shaofeng, et al. Treatment of Cu2+-containing wastewater by microbial fuel cell with excess sludge as anodic substrate [J]. Environmental Science, 2011,32(1):179-185.(in Chinese)
[6] Wolinska A, Stepniewska Z, Bielecka A, et al. Bioelectricity production from soil using microbial fuel cells[J]. Appl Biochem Biotechnol, 2014,173(8):2287-2296. DOI:10.1007/s12010-014-1034-8.
[7] Shehab N, Li D, Amy G L, et al. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors[J]. Appl Microbiol Biotechnol, 2013,97(22):9885-9895. DOI:10.1007/s00253-013-5025-4.
[8] Dunaj S J, Vallino J J, Hines M E, et al. Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells[J]. Environ Sci Technol, 2012,46(3):1914-1922. DOI:10.1021/es2032532.
[9] Afsham N, Roshandel R, Yaghmaei S, et al. Bioelectricity generation in a soil microbial fuel cell with biocathode denitrification[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2015,37(19):2092-2098. DOI:10.1080/15567036.2012.671900.
[10] He C S, Mu Z X, Yang H Y, et al. Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review[J]. Chemosphere, 2015,140:12-17. DOI:10.1016/j.chemosphere.2015.03.059.
[11] Fang Z, Song H L, Cang N, et al. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation[J]. Bioresour Technol, 2013,144:165-171. DOI:10.1016/j.biortech.2013.06.073.
[12] Wen Q, Kong F Y, Zheng H T, et al. Simultaneous processes of electricity generation and ceftriaxone sodium degradation in an air-cathode single chamber microbial fuel cell[J]. Journal of Power Sources, 2011, 196(5):2567-2572. DOI:10.1016/j.jpowsour.2010.10.085.
[13] Lu L, Yazdi H, Jin S, et al. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems[J]. J Hazard Mater, 2014,274:8-15. DOI:10.1016/j.jhazmat.2014.03.060.
[14] Gil G C, Chang I S, Kim B H, et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosens Bioelectron, 2003,18(4):327-334. DOI:10.1016/s0956-5663(02)00110-0.
[15] Deng H, Wu Y C, Zhang F, et al. Factors affecting the performance of single-chamber soil microbial fuel cells for power generation[J]. Pedosphere, 2014,24(3):330-338. DOI:10.1016/s1002-0160(14)60019-9.
[16] Chae K J, Choi M J, Lee J W, et al. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells[J]. Bioresour Technol, 2009,100(14):3518-3525. DOI:10.1016/j.biortech.2009.02.065.
[17] 冯雅丽, 李浩然, 祝学远. 单室直接微生物燃料电池性能影响因素分析[J]. 北京科技大学学报, 2007,29(S2):162-165.
  Feng Yali, Li Haoran, Zhu Xueyuan. Analysis of influencing factors on the performance of single chamber direct microbial fuel cell [J]. Journal of University of Science and Technology Beijing, 2007,29(S2):162-165.(in Chinese)
[18] Li N, Kakarla R, Min B. Effect of influential factors on microbial growth and the correlation between current generation and biomass in an air cathode microbial fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20606-20614. DOI:10.1016/j.ijhydene.2016.09.094.
[19] Klass D L. Biomass for renewable energy, fuels, and chemicals[M].New York, USA: Academic Press, 1998.
[20] Song H L, Zhang S, Yang X L, et al. Coupled effects of electrical stimulation and antibiotics on microbial community in three-dimensional biofilm-electrode reactors[J]. Water, Air & Soil Pollution, 2017, 228(2):83-1-83-10. DOI:10.1007/s11270-017-3267-y.
[21] An J, Kim B, Nam J, et al. Comparison in performance of sediment microbial fuel cells according to depth of embedded anode[J]. Bioresour Technol, 2013,127(1):138-142. DOI:10.1016/j.biortech.2012.09.095.
[22] Fang Z, Cheng S, Cao X, et al. Effects of electrode gap and wastewater condition on the performance of microbial fuel cell coupled constructed wetland[J]. Environ Technol, 2017,38(8):1056-1060. DOI:10.1080/09593330.2016.1217280.
[23] Hong S W, Chang I S, Choi Y S, et al. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell[J]. Bioresour Technol, 2009,100(12):3029-3035. DOI:10.1016/j.biortech.2009.01.030.
[24] Sajana T K, Ghangrekar M M, Mitra A. Effect of operating parameters on the performance of sediment microbial fuel cell treating aquaculture water[J]. Aquacult Eng, 2014,61:17-26. DOI:10.1016/j.aquaeng.2014.05.004.
[25] Mocali S, Galeffi C, Perrin E, et al. Alteration of bacterial communities and organic matter in microbial fuel cells(MFCs)supplied with soil and organic fertilizer[J]. Appl Microbiol Biotechnol, 2013,97(3):1299-1315. DOI:10.1007/s00253-012-3906-6.
[26] Padmanabhan P, Padmanabhan S, de Rito C, et al. Respiration of 13C-Labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA[J]. Appl Environ Microbiol, 2003,69(3):1614-1622. DOI:10.1128/aem.69.3.1614-1622.2003.
[27] Cabezas A, Pommerenke B, Boon N, et al. Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil[J]. Environ Microbiol Rep, 2015, 7(3): 489-497. DOI:10.1111/1758-2229.12277.
[28] Rabaey K, Rodriguez J, Blackall L L, et al. Microbial ecology meets electrochemistry: Electricity-driven and driving communities[J]. ISME J, 2007, 1(1): 9-18. DOI:10.1038/ismej.2007.4.
[29] Logan B E, Regan J M. Electricity-producing bacterial communities in microbial fuel cells[J]. Trends Microbiol, 2006,14(12):512-518. DOI:10.1016/j.tim.2006.10.003.
[30] Jung S, Regan J M. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors[J]. Appl Microbiol Biotechnol, 2007,77(2):393-402. DOI:10.1007/s00253-007-1162-y.
[31] de Schamphelaire L, van den Bossche L, Dang H S, et al. Microbial fuel cells generating electricity from rhizodeposits of rice plants[J]. Environ Sci Technol, 2008,42(8):3053-3058. DOI:10.1021/es071938w.

相似文献/References:

[1]郑凌逶,谢新宇,谢康和,等.基于等电势梯度模型试验的滩涂淤泥电渗效率分析[J].东南大学学报(自然科学版),2018,48(3):557.[doi:10.3969/j.issn.1001-0505.2018.03.026]
 Zheng Lingwei,Xie Xinyu,Xie Kanghe,et al.Electro-osmosis efficiency analysis of marine sludge based on constant potential gradient model tests[J].Journal of Southeast University (Natural Science Edition),2018,48(6):557.[doi:10.3969/j.issn.1001-0505.2018.03.026]

备注/Memo

备注/Memo:
收稿日期: 2017-05-20.
作者简介: 王辉(1986—),男,博士生;李先宁(联系人),男,博士,教授,博士生导师,lxn@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(21277024)、中央高校基本科研业务费专项资金资助项目(2242016K41042)、江苏省自然科学基金资助项目(BK20171351).
引用本文: 王辉,李蕾,曹羡,等.土壤微生物燃料电池在不同条件下的产电性能及微生物群落结构分析[J].东南大学学报(自然科学版),2017,47(6):1141-1147. DOI:10.3969/j.issn.1001-0505.2017.06.010.
更新日期/Last Update: 2017-11-20