[1]孙超,程琳,栾鑫,等.基于网络拓扑的子网络OD需求估计[J].东南大学学报(自然科学版),2017,47(6):1248-1252.[doi:10.3969/j.issn.1001-0505.2017.06.026]
 Sun Chao,Cheng Lin,Luan Xin,et al.Subnetwork origin-destination matrix estimation considering network topology[J].Journal of Southeast University (Natural Science Edition),2017,47(6):1248-1252.[doi:10.3969/j.issn.1001-0505.2017.06.026]
点击复制

基于网络拓扑的子网络OD需求估计()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第6期
页码:
1248-1252
栏目:
交通运输工程
出版日期:
2017-11-20

文章信息/Info

Title:
Subnetwork origin-destination matrix estimation considering network topology
作者:
孙超程琳栾鑫凃强马捷
东南大学交通学院, 南京 210096
Author(s):
Sun Chao Cheng Lin Luan Xin Tu Qiang Ma Jie
School of Transportation, Southeast University, Nanjing 210096, China
关键词:
OD矩阵估计 子网络分析 拓扑结构 弹性需求 启发式迭代算法
Keywords:
origin-destination matrix estimation subnetwork analysis topology structure elastic demand heuristic iterative algorithm
分类号:
U491
DOI:
10.3969/j.issn.1001-0505.2017.06.026
摘要:
为了对局部交通路网进行设计和评价,运用拓扑结构分析方法对子网络OD需求进行估计.根据子网络拓扑结构,分别对子网络边界点和内部点的OD量进行分析,每个与外界网络相连的边界点都为子网络的交通发生吸引点,内部点OD需求量与原来网络保持一致.进而建立了基于网络拓扑的子网络OD需求估计模型,其中目标函数同时考虑了交通需求的熵最大化及弹性化,约束条件为子网络OD量约束.将原问题分为求解交通需求和道路阻抗两部分,设计了启发式迭代算法反复求解,并运用凸组合算法计算交通需求.运用Sioux Falls网络对算法和模型进行了测试,结果表明考虑弹性需求的子网络OD估计模型在可靠性和计算精度上均优于考虑固定需求的子网络OD估计模型,算法能够快速收敛到所需精度,建立的模型可以用来对实际路网进行简化.
Abstract:
To design and evaluate the local transportation road network, the subnetwork origin-destination(OD)demand is estimated using the method of topology analysis. The nodes on the boundary of the subnetwork and inside the subnetwork are analyzed based on the subnetwork topology structure. The nodes on the boundary of the subnetwork, which connect with the outside of the subnetwork, generate or attract traffic flows; and the demands of the nodes inside the subnetwork are the same as those in the original full network. Then, the subnetwork OD matrix estimation model considering the subnetwork topology is established. This new model considers the maximum entropy and elasticity of OD demands in the objective function, and uses the OD demands as the constraints. The original problem is divided into solving the OD demand and road impedance, respectively. The heuristic iterative algorithm is designed to solve the established model, and the convex combination algorithm is developed to calculate the OD demand. The Sioux Falls network is used to illustrate the essential idea of the proposed model and the applicability of the proposed solution algorithm. The results show that the proposed model with elastic demand is superior to the OD estimation model with fixed demand in the terms of reliability and computational accuracy. The designed algorithm can rapidly convergence to the required accuracy, and the proposed model is an effective approach for simplifying the full network.

参考文献/References:

[1] Goodwin P, Noland R B. Building new roads really does create extra traffic: A response to Prakash et al.[J]. Applied Economics, 2003, 35(13): 1451-1457. DOI:10.1080/0003684032000089872.
[2] Millard-Ball A. Phantom trips: Overestimating the traffic impacts of new development [J]. Journal of Transport and Land Use, 2015, 8(1): 31-49. DOI:10.5198/jtlu.2015.384.
[3] 程琳.城市交通网络流理论[M].南京:东南大学出版社,2010:15-30.
[4] Haghani A E, Daskin M S. Network design application of an extraction algorithm for network aggregation [J]. Transportation Research Record, 1983, 944: 37-46.
[5] Zhou X, Erdogan S, Mahmassani H. Dynamic origin-destination trip demand estimation for subarea analysis[J]. Transportation Research Record: Journal of the Transportation Research Board, 2006, 1964: 176-184. DOI:10.3141/1964-19.
[6] Boyles S D. Bush-based sensitivity analysis for approximating subnetwork diversion[J]. Transportation Research Part B: Methodological, 2012, 46(1): 139-155. DOI:10.1016/j.trb.2011.09.004.
[7] Jafari E, Boyles S D. Improved bush-based methods for network contraction[J]. Transportation Research Part B: Methodological, 2016, 83: 298-313. DOI:10.1016/j.trb.2015.11.014.
[8] Gemar M, Bringardner J, Boyles S, et al. Subnetwork analysis for dynamic traffic assignment models: Strategy for estimating demand at subnetwork boundaries [J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2466: 153-161.
[9] Xie C, Kockelman K, Waller S. Maximum entropy method for subnetwork origin-destination trip matrix estimation[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2196: 111-119. DOI:10.3141/2196-12.
[10] Xie C, Kockelman K M, Waller S T. A maximum entropy-least squares estimator for elastic origin-destination trip matrix estimation [J]. Transportation Research Part B: Methodological, 2011, 45(9): 1465-1482. DOI:10.1016/j.trb.2011.05.018.
[11] 张光澄.非线性最优化计算方法[M].北京:高等教育出版社,2005:261-291.
[12] 王炜,陆建.道路交通工程系统分析方法[M].北京:人民交通出版社,2011:55-82.

备注/Memo

备注/Memo:
收稿日期: 2017-02-20.
作者简介: 孙超(1990—),男,博士生;程琳(联系人),男,博士,教授,博士生导师,gist@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51578150,51378119)、东南大学优秀博士论文基金资助项目(YBJJ1679)、江苏省研究生创新基金资助项目(KYLX15_0150)、国家留学基金委资助项目.
引用本文: 孙超,程琳,栾鑫,等.基于网络拓扑的子网络OD需求估计[J].东南大学学报(自然科学版),2017,47(6):1248-1252. DOI:10.3969/j.issn.1001-0505.2017.06.026.
更新日期/Last Update: 2017-11-20