[1]蒋忠进,赵书敏,陈阳阳,等.基于差分进化算法的圆形口径网格分布面阵的波束优化技术[J].东南大学学报(自然科学版),2018,48(1):7-12.[doi:10.3969/j.issn.1001-0505.2018.01.002]
 Jiang Zhongjin,Zhao Shumin,Chen Yangyang,et al.Beam optimization technique for circular-boundary grid-distribution plane array based on differential evolution strategy[J].Journal of Southeast University (Natural Science Edition),2018,48(1):7-12.[doi:10.3969/j.issn.1001-0505.2018.01.002]
点击复制

基于差分进化算法的圆形口径网格分布面阵的波束优化技术()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第1期
页码:
7-12
栏目:
计算机科学与工程
出版日期:
2018-01-20

文章信息/Info

Title:
Beam optimization technique for circular-boundary grid-distribution plane array based on differential evolution strategy
作者:
蒋忠进1赵书敏2陈阳阳1崔铁军1
1东南大学毫米波国家重点实验室, 南京 210096; 2中国空空导弹研究院, 洛阳 471009
Author(s):
Jiang Zhongjin1 Zhao Shumin2 Chen Yangyang1 Cui Tiejun1
1State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
2China Airborne Missile Academy, Luoyang 471009, China
关键词:
圆形口径阵列 矩形网格 三角网格 差分进化算法 波束优化
Keywords:
circular boundary array rectangular grid triangular grid differential evolution algorithm beam optimization
分类号:
TP391
DOI:
10.3969/j.issn.1001-0505.2018.01.002
摘要:
提出一种圆形口径矩形网格平面阵列和圆形口径三角网格平面阵列的波束优化方法.该方法基于差分进化算法优化阵列的幅度加权,以得到满足指标的阵列远场方向图.将阵列的幅度加权矩阵视为水平向和垂直向2个幅度加权矢量的乘积,相应地将优化矢量的长度由M×N数量级降低为M+N数量级;限定幅度加权在水平向和垂直向基于中心对称,大幅降低了优化迭代次数;采用插值算法,基于优化矢量得到适用于圆形口径阵列的幅度加权矩阵.数值仿真实验结果表明,该方法能快速高效地综合出指标满足要求的阵列方向图,副瓣电平可以达到-35 dB,零陷电平可以达到-60 dB.
Abstract:
A method of numerical optimization for the circular-boundary rectangular-grid plane array and circular-boundary triangular-grid plane array is put forward. The amplitude weight of the array is optimized in the method based on the differential evolution(DE)algorithm to obtain the far-field directivity meeting the technical target. The amplitude weight matrix of the array is viewed as the product of two independent components, respectively in horizontal or vertical direction, so as to shorten the length of the optimization vector from M×N order to M+N order. The amplitude weight is limited to be centrally symmetrical in horizontal or vertical direction, so as to obviously decrease the iteration times. The interpolation algorithm is used to obtain the amplitude weight matrix fitting for the circular-boundary array based on the optimization vector. The results of simulation experiments show that the proposed method can rapidly and efficiently synthetize the array directivity meeting the predetermined index, the side lobe level can reach -35 dB and null level can reach -60 dB.

参考文献/References:

[1] Cen L, Yu Z L, Ser W, et al. Linear aperiodic array synthesis using an improved genetic algorithm [J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 895-902. DOI:10.1109/tap.2011.2173111.
[2] Ismail T H, Hamici Z M. Array pattern synthesis using digital phase control by quantized particle swarm optimization [J]. IEEE Transactions on Antennas and Propagation, 2010, 58(6): 2142-2145. DOI:10.1109/tap.2010.2046853.
[3] Banerjee S, Mandal D. Array pattern optimization for steerable linear isotropic antenna array using novel particle swarm optimization [J]. Journal of Electromagnetic Waves and Applications, 2017, 31(2): 182-208. DOI:10.1080/09205071.2016.1268074.
[4] Mangoud M A, Alshara M T, Elragal H M. Design of time modulated concentric circular and concentric hexagonal antenna array using hybrid enhanced particle swarm optimisation and differential evolution algorithm [J]. IET Microwaves, Antennas & Propagation, 2014, 8(9): 657-665. DOI:10.1049/iet-map.2013.0132.
[5] Li X, Li W T, Shi X W, et al. Modified differential evolution algorithm for pattern synthesis of antenna arrays [J]. Progress in Electromagnetics Research, 2013, 137: 371-388. DOI:10.2528/pier13011207.
[6] Ibarra M, Panduro M A, Andrade A G. Differential evolution multi-objective for optimization of isoflux antenna arrays [J]. IETE Technical Review, 2016, 33(2): 105-114. DOI:10.1080/02564602.2015.1049222.
[7] Das S, Mandal D, Kar R, et al. A new hybridized backtracking search optimization algorithm with differential evolution for sidelobe suppression of uniformly excited concentric circular antenna arrays [J]. International Journal of RF and Microwave Computer-Aided Engineering, 2015, 25(3): 262-268. DOI:10.1002/mmce.20857.
[8] Karmakar A, Ghatak R, Mishra R K, et al. Sierpinski carpet fractal-based planar array optimization based on differential evolution algorithm [J]. Journal of Electromagnetic Waves and Applications, 2015, 29(2): 247-260. DOI:10.1080/09205071.2014.997837.
[9] Zhang L, Jiao Y C, Chen B, et al. Multi-objective optimization design of concentric ring arrays with 3D beam scanning using differential evolution algorithm [J]. International Journal of Numerical Modelling—Electronic Networks Devices and Fields, 2013, 26(6): 602-619. DOI:10.1002/jnm.1864.
[10] Storn R, Price R. Differential evolution: A simple and efficient heuristic for global optimization over continuous space [J]. Journal of Global Optimization, 1996, 11(4): 341-359.
[11] Yang S, Gan Y B, Qing A. Antenna array pattern nulling using a differential evolution algorithm [J]. International Journal of RF and Microwave Computer-Aided Engineering, 2003, 14(1): 57-63. DOI:10.1002/mmce.10118.
[12] Li G, Yang S W, Nie Z P. Direction of arrival estimation in time modulated linear arrays with unidirectional phase center motion [J]. IEEE Transactions on Antennas and Propagation, 2010, 58(4): 1105-1111.
[13] Li X, Li W T, Shi X W, et al. Modified differential evolution algorithm for pattern synthesis of antenna arrays [J]. Progress in Electromagnetics Research, 2013, 137: 371-388. DOI:10.2528/pier13011207.

备注/Memo

备注/Memo:
收稿日期: 2017-07-04.
作者简介: 蒋忠进(1973—),男,博士,副教授,zjjiang@seu.edu.cn.
基金项目: 江苏省自然科学基金青年基金资助项目(BK20130854)、江苏高校品牌专业建设工程资助项目(PPZY2015A035)、航空科学基金资助项目(20140169001).
引用本文: 蒋忠进,赵书敏,陈阳阳,等.基于差分进化算法的圆形口径网格分布面阵的波束优化技术[J].东南大学学报(自然科学版),2018,48(1):7-12. DOI:10.3969/j.issn.1001-0505.2018.01.002.
更新日期/Last Update: 2018-01-20