[1]尉玉,蔺卡宾,沙菁,等.基于二硫化钼固态纳米孔检测DNA分子实验研究[J].东南大学学报(自然科学版),2018,48(1):38-44.[doi:10.3969/j.issn.1001-0505.2018.01.007]
 Yu Yu,Lin Kabin,Sha Jingjie,et al.Experimental study on detection of DNA translocation through solid-state molybdenum disulfide nanopores[J].Journal of Southeast University (Natural Science Edition),2018,48(1):38-44.[doi:10.3969/j.issn.1001-0505.2018.01.007]
点击复制

基于二硫化钼固态纳米孔检测DNA分子实验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第1期
页码:
38-44
栏目:
生物医学工程
出版日期:
2018-01-20

文章信息/Info

Title:
Experimental study on detection of DNA translocation through solid-state molybdenum disulfide nanopores
作者:
尉玉蔺卡宾沙菁张艳陈云飞
东南大学江苏省微纳生物医疗器械设计与制造重点实验室, 南京 211189; 东南大学机械工程学院, 南京 211189
Author(s):
Yu Yu Lin Kabin Sha Jingjie Zhang Yan Chen Yunfei
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
关键词:
二硫化钼纳米孔 DNA 阻塞离子电流 过孔时间
Keywords:
MoS2 nanopore deoxyribonucleic acid current blockade dwell time
分类号:
Q78
DOI:
10.3969/j.issn.1001-0505.2018.01.007
摘要:
为了研究二硫化钼固态纳米孔在DNA检测中的性能,采用机械剥离的方法制备了单少层的二硫化钼,并将其转移到氮化硅基底上制作纳米孔,进行λ-DNA的过孔实验.研究了电压、溶液浓度对DNA分子通过二硫化钼固态纳米孔的过孔时间和幅值的影响,并与氮化硅纳米孔的实验进行了对比.实验结果表明,二硫化钼纳米孔中,使用1 mol/L的KCl溶液,λ-DNA通过纳米孔时所产生的阻塞电流信号幅值和标准幅值比都随着电压的升高而升高,过孔时间随着电压的升高而减小;而相同电压下,当KCl溶液浓度由1 mol/L降低到0.1 mol/L时,阻塞电流信号幅值随之下降,标准幅值比却随之升高,过孔速度变快.此外,在相同实验条件下,当基准幅值电流接近时,DNA分子通过二硫化钼纳米孔所产生的阻塞离子电流幅值明显高于通过氮化硅纳米孔时的阻塞离子电流幅值,归一化后的离子电流标准幅值比提高约3倍,证明二硫化钼薄膜具有更高的灵敏性和信噪比.
Abstract:
To explore the performance of solid-state molybdenum disulfide(MoS2)nanopores in deoxyribonucleic acid(DNA)detection, a MoS2 nanopore is manufactured by mechanically exfoliating few-layer MoS2 and transferring the film onto Si3N4 membranes, and used to detect biomolecules. The effects of voltages and salt solution concentrations on the dwell time and the amplitude when λ-DNA translocates through MoS2 nanopores are studied, and compared with that of the silicon nitride(Si3N4)nanopores. The experimental results show that when DNA molecules translocate through MoS2 nanopore with the concentration of KCl solution is 1 mol/L, both the amplitude of the blockade current and the normalized current increase while the translocation time decreases with the increase of the voltage. At the same voltage, when the concentration of KCl solution decreases from 1 mol/L to 0.1 mol/L, the amplitude of the blockade current decreases, while the normalized blockade current increases and the translocation velocity becomes faster. In addition, under the same experimental conditions, the blockade current induced by the DNA molecules through the MoS2 nanopores is significantly higher than that of the Si3N4 nanopores, and the normalized blockade current increases by about 3 times, proving that the nanopore on MoS2 film has higher sensitivity and signal to noise ratio compared with Si3N4 nanopores.

参考文献/References:

[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel [J]. Proc Natl Acad Sci USA, 1996, 93(24): 13770-13773. DOI:10.1073/pnas.93.24.13770.
[2] Dekker C. Solid-state nanopores [J]. Nature Nanotechnology, 2007, 2(4): 209-215. DOI:10.1038/nnano.2007.27.
[3] Fologea D, Gershow M, Ledden B, et al. Detecting single stranded DNA with a solid state nanopore [J]. Nano Lett, 2005, 5(10): 1905-1909. DOI:10.1021/nl051199m.
[4] Aksimentiev A, Heng J B, Timp G, et al. Microscopic kinetics of DNA translocation through synthetic nanopores [J]. Biophysical Journal, 2004, 87(3): 2086-2097. DOI:10.1529/biophysj.104.042960.
[5] Storm A J, Storm C, Chen J H, et al. Fast DNA translocation through a solid-state nanopore [J]. Nano Lett, 2005, 5(7): 1193-1197. DOI:10.1021/nl048030d.
[6] Iqbal S M, Akin D, Bashir R. Solid-state nanopore channels with DNA selectivity [J]. Nature Nanotechnology, 2007, 2(4): 243-248. DOI:10.1038/nnano.2007.78.
[7] Liu S, Lu B, Zhao Q, et al. Boron nitride nanopores: Highly sensitive DNA single-molecule detectors [J]. Advanced Materials, 2013, 25(33): 4549-4554. DOI:10.1002/adma.201301336.
[8] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699-712. DOI:10.1038/nnano.2012.193.
[9] Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane [J]. Nature, 2010, 467(7312): 190-193. DOI:10.1038/nature09379.
[10] Schneider G F, Kowalczyk S W, Calado V E, et al. DNA translocation through graphene nanopores [J]. Nano Lett, 2010, 10(8): 3163-3167. DOI:10.1021/nl102069z.
[11] Merchant C A, Healy K, Wanunu M, et al. DNA translocation through graphene nanopores [J]. Nano Lett, 2010, 10(8): 2915-2921.
[12] Garaj S, Liu S, Golovchenko J A, et al. Molecule-hugging graphene nanopores [J]. Proc Natl Acad Sci USA, 2013, 110(30): 12192-12196. DOI:10.1073/pnas.1220012110.
[13] Husale S, Sahoo S, Radenovic A, et al. ssDNA binding reveals the atomic structure of graphene [J]. Langmuir, 2010, 26(23): 18078-18082. DOI:10.1021/la102518t.
[14] Choi W, Cho M Y, Konar A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared [J]. Advanced Materials, 2012, 24(43): 5832-5836. DOI:10.1002/adma.201201909.
[15] Liu K K, Zhang W J, Lee Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates [J]. Nano Lett, 2012, 12(3): 1538-1544. DOI:10.1021/nl2043612.
[16] Li H, Zhang Q, Yap C C R, et al. From bulk to monolayer MoS2: Evolution of raman scattering [J]. Adv Funct Mater, 2012, 22(7): 1385-1390. DOI:10.1002/adfm.201102111.
[17] Kowalczyk S W, Grosberg A Y, Rabin Y, et al. Modeling the conductance and DNA blockade of solid-state nanopores [J]. Nanotechnology, 2011, 22(31): 315101. DOI:10.1088/0957-4484/22/31/315101.
[18] Feng J D, Graf M, Liu K, et al. Single-layer MoS2 nanopores as nanopower generators [J]. Nature, 2016, 536(7615): 197-200. DOI:10.1038/nature18593.
[19] Smeets R M M, Keyser U F, Krapf D, et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores [J]. Nano Lett, 2006, 6(1): 89-95. DOI:10.1021/nl052107w.
[20] Kowalczyk S W, Wells D B, Aksimentiev A, et al. Slowing down DNA Translocation through a nanopore in lithium chloride [J]. Nano Lett, 2012, 12(2): 1038-1044. DOI:10.1021/nl204273h.
[21] 应佚伦, 张星, 刘钰, 等. 纳米通道单分子检测P53蛋白与DNA的弱相互作用 [J]. 化学学报, 2013, 71(1): 44-50. DOI:10.6023/A12110982.
Ying Yilun, Zhang Xing, Liu Yu, et al. Single molecule study of the weak biological interactions between P53 and DNA[J]. Acta Chimica Sinica, 2013, 71(1): 44-50. DOI:10.6023/A12110982. (in Chinese)
[22] Ying Y L, Long Y T. Single-molecule analysis in an electrochemical confined space [J]. Science China Chemistry, 2017, 60(9): 1187-1190. DOI:10.1007/s11426-017-9082-5.
[23] Ma J, Qiu Y H, Yuan Z S, et al. Detection of short single-strand DNA homopolymers with ultrathin Si3N4 nanopores [J]. Phys Rev E, 2015, 92(2): 022719. DOI:10.1103/PhysRevE.92.022719.

相似文献/References:

[1]周士新,谢建明,孙啸,等.不同物种间胰岛素及其编码mRNA,DNA序列比较与分析[J].东南大学学报(自然科学版),2003,33(3):292.[doi:10.3969/j.issn.1001-0505.2003.03.011]
 Zhou Shixin,Xie Jianming,Sun Xiao,et al.Comparison and analysis of insulin sequences and their coded mRNA and DNA among different species[J].Journal of Southeast University (Natural Science Edition),2003,33(1):292.[doi:10.3969/j.issn.1001-0505.2003.03.011]
[2]沙菁?,等.LiCl溶液中基于固态纳米孔的DNA检测[J].东南大学学报(自然科学版),2016,46(5):982.[doi:10.3969/j.issn.1001-0505.2016.05.014]
 Sha Jingjie,Shi Hongjiao,Xu Bing.Detection of DNA based on solid-state nanopore in LiCl solution[J].Journal of Southeast University (Natural Science Edition),2016,46(1):982.[doi:10.3969/j.issn.1001-0505.2016.05.014]
[3]马建,王欣,李堃,等.基于氮化硅薄膜纳米孔制备及DNA分子检测[J].东南大学学报(自然科学版),2017,47(2):265.[doi:10.3969/j.issn.1001-0505.2017.02.012]
 Ma Jian,Wang Xing,Li Kun,et al.Fabrication of Si3N4 nanopore for DNA detection[J].Journal of Southeast University (Natural Science Edition),2017,47(1):265.[doi:10.3969/j.issn.1001-0505.2017.02.012]

备注/Memo

备注/Memo:
收稿日期: 2017-06-09.
作者简介: 尉玉(1994—), 女, 硕士生;陈云飞(联系人),男,博士,教授,博士生导师,yunfeichen@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51375092,51435003,51675101)、江苏省自然科学基金资助项目(BK20140627)、东南大学优秀青年教师教学科研资助项目(2242015R30002).
引用本文: 尉玉,蔺卡宾,沙菁,等.基于二硫化钼固态纳米孔检测DNA分子实验研究[J].东南大学学报(自然科学版),2018,48(1):38-44. DOI:10.3969/j.issn.1001-0505.2018.01.007.
更新日期/Last Update: 2018-01-20