[1]刘新天,李贺,何耀,等.基于IUPF算法与可变参数电池模型的SOC估计方法[J].东南大学学报(自然科学版),2018,48(1):54-62.[doi:10.3969/j.issn.1001-0505.2018.01.009]
 Liu Xintian,Li He,He Yao,et al.SOC estimation method based on IUPF algorithm and variable parameter battery model[J].Journal of Southeast University (Natural Science Edition),2018,48(1):54-62.[doi:10.3969/j.issn.1001-0505.2018.01.009]
点击复制

基于IUPF算法与可变参数电池模型的SOC估计方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第1期
页码:
54-62
栏目:
电气工程
出版日期:
2018-01-20

文章信息/Info

Title:
SOC estimation method based on IUPF algorithm and variable parameter battery model
作者:
刘新天李贺何耀郑昕昕曾国建
合肥工业大学智能制造技术研究院, 合肥 230009
Author(s):
Liu Xintian Li He He Yao Zheng Xinxin Zeng Guojian
Intelligent Manufacturing Institute, Hefei University of Technology, Hefei 230009, China
关键词:
锂电池 荷电状态 可变参数Thevenin模型 IUPF算法
Keywords:
lithium battery state-of-charge(SOC) variable parameter Thevenin model improved unscented Kalman particle filter(IUPF)algorithm
分类号:
TM912
DOI:
10.3969/j.issn.1001-0505.2018.01.009
摘要:
针对常用电池模型参数固定和适用范围有限的问题,建立受温度和SOC影响的可变参数的Thevenin模型,并利用实验设计(DOE)方法和最小二乘法对模型参数进行辨识.针对系统噪声较大时影响算法估计精度的问题,提出了一种改进的无迹卡尔曼粒子滤波(IUPF)算法.将系统状态噪声和量测噪声两者同时引入到采样点中,对其进行对称采样处理,同时将其引入到算法计算过程中以保证算法的精度.在可变参数Thevenin模型基础上采用的IUPF算法,在保证模型适用范围的同时减小了噪声对系统估计精度的影响.实验及仿真结果表明,基于IUPF算法与可变参数电池模型的SOC估计方法在解决现有电池模型适用范围有限、保证模型精度的同时,在多个温度下对SOC有较高的估算精度.尤其在系统状态噪声、量测噪声影响较大时,算法估算精度有了明显提高,且对由模型参数所带来的扰动具有良好的鲁棒性.
Abstract:
Aiming at the problem that the parameters of commonly used battery model are fixed and the scope of application is limited, the variable parameter Thevenin model affected by the temperature and the state-of-charge(SOC)is established. The model parameters are identified by the design of experiment(DOE)method and the least squares method. To solve the problem that the estimation accuracy of the algorithm is affected when the system noise is larger, an improved unscented Kalman particle filter(IUPF)algorithm is proposed. The system state noise and the measurement noise are simultaneously introduced into the sample point, the noises are symmetrically sampled and imported into the process of the algorithm calculation to ensure the accuracy of the algorithm. The IUPF algorithm adopted based on variable parameter Thevenin model reduces the impacts of noises on the system estimation accuracy while ensuring the scope of the model. The experimental and simulation results show that the SOC estimation method based on IUPF algorithm and variable parameter battery model can keep a higher estimation accuracy over a large temperature range, while solving the problem that the scope of application is limited as well as keeping the accuracy of the model. Especially when the system state noise and measurement noise impact seriously, the accuracy of the model is improved, and the method has better robustness to the disturbance caused by the model parameters.

参考文献/References:

[1] Chaoui H, Gualous H. Adaptive state of charge estimation of lithium-ion batteries with parameter and thermal uncertainties [J]. IEEE Transactions on Control Systems Technology, 2017, 25(2): 752-759. DOI: 10.1109/TCST.2016.2572362.
[2] 刘毅, 谭国俊, 何晓群. 优化电池模型的自适应Sigma卡尔曼荷电状态估算[J]. 电工技术学报, 2017, 32(2): 108-118. DOI:10.19595/j.cnki.1000-6753.tces.2017.02.013.
Liu Yi, Tan Guojun, He Xiaoqun. Optimized battery model based adaptive sigma Kalman filter for state of charge estimation [J]. Transactions of China Electrotechnical Society, 2017, 32(2): 108-118. DOI:10.19595/j.cnki.1000-6753.tces.2017.02.013.(in Chinese).
[3] Chen J, Xu C F, Su H Y, et al. Neural network-based state of charge observer design for lithium-ion batteries [J]. IEEE Transactions on Control Systems Technology, 2018, 26(1): 313-320. DOI: 10.1109/TCST.2017.2664726.
[4] 吴铁洲, 罗蒙, 张琪, 等. 基于迭代扩展卡尔曼滤波算法的电池SOC估算[J]. 电力电子技术, 2016, 50(5): 95-98. DOI:10.3969/j.issn.1000-100X.2016.05.028
Wu Tiezhou, Luo Meng, Zhang Qi, et al. Battery SOC estimation based on iterative extended Kalman filter algorithm [J]. Power Electronics, 2016, 50(5): 95-98.DOI:10.3969/j.issn.1000-100X.2016.05.028. (in Chinese)
[5] 何耀, 张陈斌, 刘兴涛, 等. 基于信息融合的LiFePO4动力电池组SOC估计[J]. 控制与决策, 2014, 29(1):188-192. DOI:10.13195/j.kzyjc.2012.1441.
He Yao, Zhang Chenbin, Liu Xingtao, et al. SOC estimation for LiFePO4 high-power batteries based on information fusion [J]. Control and Decision, 2014, 29(1):188-192. DOI:10.13195/j.kzyjc.2012.1441. (in Chinese)
[6] 刘江, 王玉金, 段建雷, 等. 基于高斯分布的多层无迹卡尔曼滤波算法[J]. 控制与决策, 2016, 31(4): 609-615. DOI:10.13195/j.kzyjc.2015.0039.
Liu Jiang, Wang Yujin, Duan Jianlei, et al. Multi-layer unscented Kalman filtering algorithm based on Gaussian distribution[J]. Control and Decision, 2016, 31(4):609-615. DOI:10.13195/j.kzyjc.2015.0039. (in Chinese)
[7] 汪永志, 贝绍轶, 汪伟, 等. 基于粒子滤波算法的动力电池SOC估计[J]. 机械设计与制造工程, 2014, 43(10):69-73. DOI:10.3969/j.issn.2095-509X.2014.10.016.
Wang Yongzhi, Bei Shaoyi, Wang Wei, et al. Battery state of charge estimation based on particle filter algorithm[J]. Machine Design and Manufacturing Engineering, 2014, 43(10): 69-73. DOI:10.3969/j.issn.2095-509X.2014.10.016. (in Chinese)
[8] 何耀. 动力锂电池组状态估计策略及管理系统技术研究[D]. 合肥:中国科学技术大学自动化系, 2012.
[9] 陈息坤, 孙冬, 陈小虎. 锂离子电池建模及其荷电状态鲁棒估计 [J]. 电工技术学报, 2015, 30(15): 141-147. DOI:10.19595/j.cnki.1000-6753.tces.2015.15.016.
Chen Xiqun, Sun Dong, Chen Xiaohu. Modeling and state of charge robust estimation for lithium-batteries [J]. Transactions of China Electrotechnical Society, 2015, 30(15): 141-147. DOI:10.19595/j.cnki.1000-6753.tces.2015.15.016. (in Chinese)
[10] 戴海峰, 魏学哲, 孙泽昌. 基于等效电路的内阻自适应锂离子电池模型[J]. 同济大学学报(自然科学版), 2010, 38(1): 98-102. DOI:10.3969/j.issn.0253-374x.2010.01.018.
Dai Haifeng, Wei Xuezhe, Sun Zechang. An inner resistance adaptive model based on equivalent circuit of lithium-ion batteries [J]. Journal of Tongji University(Natural Science), 2010, 38(1): 98-102. DOI:10.3969/j.issn.0253-374x.2010.01.018. (in Chinese)
[11] 杨世春, 麻翠娟. 基于PNGV改进模型的SOC估计算法[J]. 汽车工程, 2015, 37(5): 582-586,598. DOI:10.19562/j.chinasae.qcgc.2015.05.018.
Yang Shichun, Ma Cuijuan. SOC estimation algorithm based on improved PNGV model [J]. Automotive Engineering, 2015, 37(5): 582-586,598. DOI:10.19562/j.chinasae.qcgc.2015.05.018. (in Chinese)
[12] Xiong R, He H W, Zhao K. Research on an online identification algorithm for a thevenin battery model by an experimental approach [J]. International Journal of Green Energy, 2015, 12(3): 272-278. DOI:10.1080/15435075.2014.891512.
[13] 张阳, 潘文霞. 带可变参数锂离子电池Thevenin模型[J]. 电源技术, 2013, 37(5):755-757. DOI:10.3969/j.issn.1002-087X.2013.05.015.
Zhang Yang, Pan Wenxia. Thevenin model of lithium-ion battery with variable parameters [J]. Chinese Journal of Power Sources, 2013, 37(5): 755-757. DOI:10.3969/j.issn.1002-087X.2013.05.015. (in Chinese)
[14] 李哲, 韩雪冰, 卢兰光, 等. 动力型磷酸铁锂电池的温度特性[J]. 机械工程学报, 2011, 47(18): 115-120. DOI:10.3901/JME.2011.18.115.
Li Zhe, Han Xuebing, Lu Languang, et al. Temperature characteristics of power LiFePO4 batteries [J]. Journal of Mechanical Engineering, 2011, 47(18): 115-120. DOI:10.3901/JME.2011.18.115. (in Chinese)
[15] Low W Y, Abdul Aziz M J, Idris N R N. Modeling of lithium-titanate battery with ambient temperature effect for charger design [J]. IET Power Electronics, 2016, 9(6): 1204-1212. DOI:10.1049/iet-pel.2015.0639.
[16] 刘新天, 何耀, 曾国建, 等. 考虑温度影响的锂电池功率状态估计[J]. 电工技术学报, 2016, 31(13):155-163. DOI:10.19595/j.cnki.1000-6753.tces.2016.13.018.
Liu Xintian, He Yao, Zeng Guojian, et al. State-of-power estimation for li-ion battery considering the effect of temperature[J]. Transactions of China Electrotechnical Society, 2016, 31(13):155-163. DOI:10.19595/j.cnki.1000-6753.tces.2016.13.018. (in Chinese)
[17] Weizhong W, Pawel M, Khalid K, et al. Modeling, parameterization, and benchmarking of a lithium-ion electric bicycle battery [C]// IEEE Energy Conversion Congress and Exposition(ECCE). Milwaukee, WI, USA, 2016:1-7. DOI:10.1109/ECCE.2016.7855266.
[18] Xingtao L, Zonghai C, Chenbin Z, et al. A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation [J]. Applied Energy, 2014, 123: 263-272. DOI:10.1016/j.apenergy.2014.02.072.
[19] 黄铫, 张天骐, 高清山, 等. 一种提高无迹卡尔曼滤波精确度的方法[J]. 计算机仿真, 2010, 27(3):348-352. DOI:10.3969/j.issn.1006-9348.2010.03.085.
Huang Yao, Zhang Tianqi, Gao Qingshan, et al. A method improving the accuracy of UKF [J]. Computer Simulation, 2010, 27(3):348-352. DOI:10.3969/j.issn.1006-9348.2010.03.085. (in Chinese)

相似文献/References:

[1]刘新天,孙张驰,何耀,等.基于环境变量建模的锂电池SOC估计方法[J].东南大学学报(自然科学版),2017,47(2):306.[doi:10.3969/j.issn.1001-0505.2017.02.018]
 Liu Xintian,Sun Zhangchi,He Yao,et al.SOC estimation method based on lithium-ion cell model considering environmental factors[J].Journal of Southeast University (Natural Science Edition),2017,47(1):306.[doi:10.3969/j.issn.1001-0505.2017.02.018]

备注/Memo

备注/Memo:
收稿日期: 2017-08-01.
作者简介: 刘新天(1981—),男,博士,副研究员,xintian.liu@hfut.edu.cn.
基金项目: 国家自然科学基金资助项目(51607052,61603120).
引用本文: 刘新天,李贺,何耀,等.基于IUPF算法与可变参数电池模型的SOC估计方法[J].东南大学学报(自然科学版),2018,48(1):54-62. DOI:10.3969/j.issn.1001-0505.2018.01.009.
更新日期/Last Update: 2018-01-20