[1]刘博,陈晓平,梁财,等.生物质直燃锅炉过热器管材的高温腐蚀动力学特性[J].东南大学学报(自然科学版),2018,48(1):78-84.[doi:10.3969/j.issn.1001-0505.2018.01.012]
 Liu Bo,Chen Xiaoping,Liang Cai,et al.High-temperature corrosion kinetics of biomass-fired boiler superheater materials[J].Journal of Southeast University (Natural Science Edition),2018,48(1):78-84.[doi:10.3969/j.issn.1001-0505.2018.01.012]
点击复制

生物质直燃锅炉过热器管材的高温腐蚀动力学特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第1期
页码:
78-84
栏目:
能源与动力工程
出版日期:
2018-01-20

文章信息/Info

Title:
High-temperature corrosion kinetics of biomass-fired boiler superheater materials
作者:
刘博陈晓平梁财刘道银马吉亮
东南大学能源与环境学院, 南京 210096
Author(s):
Liu Bo Chen Xiaoping Liang Cai Liu Daoyin Ma Jiliang
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
生物质直燃锅炉 过热器 高温腐蚀 活化氧化
Keywords:
biomass-fired boiler superheater high-temperature corrosion active oxidation
分类号:
TK224.9
DOI:
10.3969/j.issn.1001-0505.2018.01.012
摘要:
针对生物质中氯含量较高,生物质直燃锅炉在运行中经常发生氯引起的过热器高温腐蚀问题,模拟生物质直燃锅炉过热器工作的温度条件和含HCl的烟气气氛,利用管式炉采用增重法对15CrMoG,12Cr1MoVG,12Cr2MoWVTiB,20G,T91,TP347H和0Cr25Ni20七种常用的过热器管材进行高温腐蚀实验.研究各管材的腐蚀增重拟合曲线,并基于热分析动力学方法对高温腐蚀的动力学模型进行分析.结果表明,腐蚀增重符合抛物线规律,温度和HCl浓度对腐蚀速度影响显著.7种管材中,T91,TP347H,0Cr25Ni20具有较好的耐高温腐蚀性能,这可能与它们的合金组分中较高的镍含量有关.动力学分析结果显示,高温腐蚀反应遵循一维扩散动力学模型.
Abstract:
Aiming at the problems that biomass-fired boiler often experiences chlorine-induced high-temperature corrosion of superheater due to high amount of chlorine in biomass, high-temperature corrosion experiments are conducted on seven types of commercial superheater alloys, i.e. 15CrMoG, 12Cr1MoVG, 12Cr2MoWVTiB, 20G, T91, TP347H and 0Cr25Ni20 using a weight-increase method in a horizontal-tube furnace, with temperature conditions and HCl-containing atmosphere simulating the working conditions of superheater in a biomass-fired boiler. Mass gain curves of the specimens are plotted and corrosion kinetics are studied using thermal analysis kinetics method. The experimental results show that the mass gains fit with parabolic curves and corrosion rates are strongly influenced by temperatures and HCl concentrations. Among the tested alloys, T91, TP347H and 0Cr25Ni20 have better performances against the high-temperature corrosion than the other alloys, which are attributed to their higher Ni content. The kinetics analysis shows that the high-temperature corrosion follows the one-dimensional diffusion model.

参考文献/References:

[1] International Renewable Energy Agency. Renewable energy cost analysis: Biomass for power generation[R]. Abu Dhabi: IRENA, 2012.
[2] Baxter L L, Miles T R, Miles T R, et al. The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences[J]. Fuel Processing Technology, 1998, 54(1): 47-78. DOI:10.1016/s0378-3820(97)00060-x.
[3] Frandsen F J. Utilizing biomass and waste for power production—A decade of contributing to the understanding, interpretation and analysis of deposits and corrosion products[J]. Fuel, 2005, 84(10): 1277-1294. DOI:10.1016/j.fuel.2004.08.026.
[4] Sandberg J, Karlsson C, Fdhila R B. A 7 year long measurement period investigating the correlation of corrosion, deposit and fuel in a biomass fired circulated fluidized bed boiler[J]. Applied Energy, 2011, 88(1): 99-110. DOI:10.1016/j.apenergy.2010.07.025.
[5] Grabke H J, Reese E, Spiegel M. The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits[J]. Corrosion Science, 1995, 37(7): 1023-1043. DOI:10.1016/0010-938x(95)00011-8.
[6] Michelsen H P, Frandsen F, Dam-Johansen K, et al. Deposition and high temperature corrosion in a 10 MW straw fired boiler[J]. Fuel Processing Technology, 1998, 54(1): 95-108. DOI:10.1016/s0378-3820(97)00062-3.
[7] Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers[J]. Progress in Energy and Combustion Science, 2000, 26(3): 283-298. DOI:10.1016/s0360-1285(00)00003-4.
[8] Montgomery M, Karlsson A. In-situ corrosion investigation at Masnedφ CHP plant—A straw-fired power plant[J]. Materials and Corrosion, 1999, 50(10): 579-584. DOI:10.1002/(sici)1521-4176(199910)50:10<579::aid-maco579>3.0.co;2-m.
[9] Montgomery M, Karlsson A, Larsen O H. Field test corrosion experiments in Denmark with biomass fuels. Part 1: Straw-firing[J]. Materials and Corrosion, 2002, 53(2): 121-131. DOI:10.1002/1521-4176(200202)53:2<121::aid-maco121>3.0.co;2-r.
[10] Antunes R A, de Oliveira M C L. Corrosion in biomass combustion: A materials selection analysis and its interaction with corrosion mechanisms and mitigation strategies[J]. Corrosion Science, 2013, 76: 6-26. DOI:10.1016/j.corsci.2013.07.013.
[11] Zahs A, Spiegel M, Grabke H J. Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400—700 ℃[J]. Corrosion Science, 2000, 42(6): 1093-1122. DOI:10.1016/s0010-938x(99)00142-0.
[12] Niu Y Q, Tan H Z, Hui S E. Ash-related issues during biomass combustion-alkali-induced slagging, silicate melt-induced slagging(ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Progress in Energy and Combustion Science, 2016, 52: 1-61. DOI:10.1016/j.pecs.2015.09.003.
[13] 印佳敏, 吴占松. TP347H在生物质锅炉过热器气相条件下的腐蚀特性(I)[J]. 热力发电, 2009, 38(7): 27-31.
  Yin Jiamin, Wu Zhansong. Corrosive charactors of TP347H steel in superheater’s atmosphere of biomass-burned boiler[J]. Thermal Power Generation, 2009, 38(7): 27-31.(in Chinese)
[14] 王永征, 姜磊, 岳茂振, 等. 生物质混煤燃烧过程中受热面金属氯腐蚀特性试验研究[J]. 中国电机工程学报, 2013, 33(20): 88-95.
  Wang Yongzheng, Jiang Lei, Yue Maozhen, et al. Experimental study on characteristics of chlorine corrosion to heating surface metal during co-firing of coal and biomass[J]. Proceedings of the CSEE, 2013, 33(20): 88-95.(in Chinese)
[15] 胡荣祖,史启祯. 热分析动力学[M].北京:科学出版社, 2001:2-14.

相似文献/References:

[1]林中达,钱钟韩.关于低循环倍率锅炉的压力稳定性问题[J].东南大学学报(自然科学版),1983,13(2):1.[doi:10.3969/j.issn.1001-0505.1983.02.001]
 Lin Zhong-da Qian Zhog-han.Pressure Stability in a Boiler with Forced Recirculation[J].Journal of Southeast University (Natural Science Edition),1983,13(1):1.[doi:10.3969/j.issn.1001-0505.1983.02.001]
[2]钱锺韩.汽鼓鍋炉—汽輪机联合系統在汽压調节方面的动态特性[J].东南大学学报(自然科学版),1963,5(2):1.[doi:10.3969/j.issn.1001-0505.1963.02.001]
[3]陈来九.直流鍋炉—汽輪机单元机組的調节系統[J].东南大学学报(自然科学版),1963,5(2):25.[doi:10.3969/j.issn.1001-0505.1963.02.002]
[4]曾祖庆.关于汽輪机采用滑参数运行問題的討論[J].东南大学学报(自然科学版),1963,5(2):37.[doi:10.3969/j.issn.1001-0505.1963.02.003]
[5]顾立钧,陈厚肇.回转式喷燃器调节汽温的动态和静态特性[J].东南大学学报(自然科学版),1965,7(2):73.[doi:10.3969/j.issn.1001-0505.1965.02.005]
 [J].Journal of Southeast University (Natural Science Edition),1965,7(1):73.[doi:10.3969/j.issn.1001-0505.1965.02.005]
[6]高镗年.汽鼓锅炉汽温调节动态特性的工程计算方法和模拟[J].东南大学学报(自然科学版),1965,7(2):89.[doi:10.3969/j.issn.1001-0505.1965.02.006]
 [J].Journal of Southeast University (Natural Science Edition),1965,7(1):89.[doi:10.3969/j.issn.1001-0505.1965.02.006]

备注/Memo

备注/Memo:
收稿日期: 2017-08-03.
作者简介: 刘博(1984—),男,博士生;陈晓平(联系人),男,博士,教授,博士生导师,xpchen@seu.edu.cn.
引用本文: 刘博,陈晓平,梁财,等.生物质直燃锅炉过热器管材的高温腐蚀动力学特性[J].东南大学学报(自然科学版),2018,48(1):78-84. DOI:10.3969/j.issn.1001-0505.2018.01.012.
更新日期/Last Update: 2018-01-20