参考文献/References:
[1] 崔之芬, 诸颖, 李晓明,等. 纳米颗粒诱导的自噬效应及在生物医药领域的应用[J]. 科学通报, 2013, 58(34):3521-3529.
Cui Zhifen, Zhu Ying, Li Xiaoming, et al. Induction of autophagy by nanoparticles and their application in biomedicine[J]. Science China Press, 2013, 58(34):3521-3529.(in Chinese)
[2] 马丽娟. 纳米小尺寸MOSFET中热载流子效应研究[D]. 南京: 南京大学物理学院, 2014.
[3] 王奕琛, 姜秀娥. 基于碳载小尺寸银纳米颗粒的过氧化氢电化学传感器[J]. 分析化学, 2014, 42(5):689-694. DOI:10.3724/SP.J.1096.2014.30818.
Wang Yichen, Jiang Xiue. Hydrogen peroxide biosensor based on carbon supported ultrafine silver nanoparticles[J]. Chinese Journal of Analytical Chemistry,2014,42(5):689-694. DOI:10.3724/SP.J.1096.2014.30818. (in Chinese)
[4] Westerhoff P, Song G, Hristovski K, et al. Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials[J]. Journal of Environmental Monitoring, 2011, 13(5):1195-1203. DOI:10.1039/c1em10017c.
[5] Kiser M A, Westerhoff P, Benn T, et al. Titanium nanomaterial removal and release from wastewater treatment plants[J]. Environmental Science & Technology, 2009, 43(17):6757-6763. DOI:10.1021/es901102n.
[6] Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials(TiO2, ZnO, Ag, CNT, fullerenes)for different regions[J]. Environmental Science & Technology, 2009, 43(24):9216-9222. DOI:10.1021/es9015553.
[7] Liu L, Fan W, Lu H, et al. Effects of the interaction between TiO2 with different percentages of exposed {001} facets and Cu2+ on biotoxicity in Daphnia magna[J]. Scientific Reports, 2015, 5(1):11121-01-11121-10. DOI:10.1038/srep11121.
[8] Sun Y, Zhang G, He Z, et al. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae[J]. International Journal of Nanomedicine, 2016, 11:905-918. DOI:10.2147/ijn.s100350.
[9] Zhang X Q, Yin L H, Tang M, et al. ZnO, TiO2, SiO2, and Al2O3 nanoparticles-induced toxic effects on human fetal lung fibroblasts[J]. Biomedical Environment Science, 2011, 24(6):661-669. DOI:10.3967/0895-3988.2011.06.011.
[10] Nowack B. The behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2009, 157(4):1063-1064. DOI:10.1016/j.envpol.2008.12.019.
[11] Zheng X, Wu R, Chen Y. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J]. Environmental Science & Technology, 2011, 45(7):2826-2832. DOI:10.1021/es2000744.
[12] Garcia A, Delgado L, Tora J A, et al. Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment[J]. Journal of Hazardous Materials, 2012, 199-200(8):64-72. DOI:10.1016/j.jhazmat.2011.10.057.
[13] Zheng X, Chen Y, Wu R. Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge[J]. Environmental Science & Technology, 2011, 45(17):7284-7290. DOI:10.1021/es2008598.
[14] Wu V C. A review of microbial injury and recovery methods in food[J]. Food Microbiology, 2008, 25(6):735-744. DOI:10.1016/j.fm.2008.04.011.
[15] Hou L, Li K, Ding Y, et al. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction[J]. Chemosphere, 2012, 87(3):248-252. DOI:10.1016/j.chemosphere.2011.12.042.
[16] Fang X, Ran Y, Li B, et al. Stresses exerted by ZnO, CeO2, and anatase TiO2, nanoparticles on the Nitrosomonas europaea[J]. Journal Colloid Interface Science, 2010, 348(2):329-334. DOI:10.1016/j.jcis.2010.04.075.
[17] Yu R, Wu J, Liu M, et al. Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea[J]. Chemosphere, 2016, 153:187-197. DOI:10.1016/j.chemosphere.2016.03.065.
[18] Zhao J, Wang Z, Dai Y, et al. Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter[J]. Water Research, 2013, 47(12):4169-4178. DOI:10.1016/j.watres.2012.11.058.
[19] Kumar A, Pandey A K, Singh S, et al. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli[J]. Free Radical Biology Medicine, 2011, 51(10):1872-1881. DOI:10.1016/j.freeradbiomed.2011.08.025.
[20] Yu R, Fang X, Somasundaran P, et al. Short-term effects of TiO2, CeO2, and ZnO nanoparticles on metabolic activities and gene expression of Nitrosomonas europaea[J]. Chemosphere, 2015, 128:207-215. DOI:10.1016/j.chemosphere.2015.02.002.
[21] Lopes S, Ribeiro F, Wojnarowicz J, et al. Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution[J]. Environmental Toxicology & Chemistry, 2014, 33(1):190-198. DOI:10.1002/etc.2413.
[22] 张鹏, 马宇辉, 张智勇,等. 纳米CeO2对莴苣属植物的种属特异性毒性[C]//中国毒理学会中青年学者科技论坛.银川,2014:33.
[23] Li M, Lin D H, Zhu L Z. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli[J]. Environmental Pollution, 2013, 173:97-102. DOI:10.1016/j.envpol.2012.10.026.
[24] Zheng X, Su Y L, Chen Y G, et al. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity[J]. Environmental Science & Technology, 2014, 48(23):13800-13807. DOI:10.1021/es504251v.
[25] Adams L K, Lyon D Y, Alvarez P J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions[J]. Water Research, 2006, 40(19):3527-3532. DOI:10.1016/j.watres.2006.08.004.
[26] Radniecki T S, Semprini L, Dolan M E. Expression of merA, amoA and hao in continuously cultured nitrosomonas europaea cells exposed to zinc chloride additions[J]. Biotechnology & Bioengineering, 2009, 102(2):546-553. DOI:10.1002/bit.22069.
[27] Park S, Ely R L. Genome-wide transcriptional responses of Nitrosomonas europaea to zinc[J]. Archives of Microbiology, 2008, 189(6):541-548. DOI:10.1007/s00203-007-0341-7.
[28] Wu J K, Lu H J, Zhu G G, et al. Regulation of membrane fixation and energy production/conversion for adaptation and recovery of ZnO nanoparticle impacted Nitrosomonas europaea[J]. Applied Microbiology Biotechnology, 2017,101(7): 2953-2965. DOI:10.1007/s00253-017-8092-0.
相似文献/References:
[1]陆荔,马明,张宇,等.纳米材料生物安全性研究进展[J].东南大学学报(自然科学版),2004,34(5):711.[doi:10.3969/j.issn.1001-0505.2004.05.033]
Lu Li,Ma Ming,Zhang Yu,et al.Development of study on the bio-safety of nanomaterials[J].Journal of Southeast University (Natural Science Edition),2004,34(1):711.[doi:10.3969/j.issn.1001-0505.2004.05.033]
[2]李舒宏,丁一,杜垲,等.纳米TiO_2颗粒强化MDEA溶液鼓泡吸收CO_2的特性[J].东南大学学报(自然科学版),2013,43(4):830.[doi:10.3969/j.issn.1001-0505.2013.04.029]
Li Shuhong,Ding Yi,Du Kai,et al.CO2 bubble absorption performance enhancement by TiO2 nanoparticles in MDEA solution[J].Journal of Southeast University (Natural Science Edition),2013,43(1):830.[doi:10.3969/j.issn.1001-0505.2013.04.029]