[1]张琦,刘军,戴国亮,等.大直径嵌岩桩桩端极限承载力计算方法[J].东南大学学报(自然科学版),2018,48(1):118-124.[doi:10.3969/j.issn.1001-0505.2018.01.018]
 Zhang Qi,Liu Jun,Dai Guoliang,et al.Calculation methods for ultimate end bearing capacity of large diameter rock-socketed piles[J].Journal of Southeast University (Natural Science Edition),2018,48(1):118-124.[doi:10.3969/j.issn.1001-0505.2018.01.018]
点击复制

大直径嵌岩桩桩端极限承载力计算方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第1期
页码:
118-124
栏目:
土木工程
出版日期:
2018-01-20

文章信息/Info

Title:
Calculation methods for ultimate end bearing capacity of large diameter rock-socketed piles
作者:
张琦刘军戴国亮龚维明
东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096; 东南大学土木工程学院, 南京 210096
Author(s):
Zhang Qi Liu Jun Dai Guoliang Gong Weiming
Key of Laboratory for Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
School of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
嵌岩桩 桩端端承力 计算方法 破坏模式 复合判据
Keywords:
rock-socketed pile pile end bearing capacity calculation method failure mode composite criterion
分类号:
TU47
DOI:
10.3969/j.issn.1001-0505.2018.01.018
摘要:
为更加准确获得大直径嵌岩桩桩端极限承载力,假定桩端岩体整体连续滑裂破坏、桩周岩体剪切破坏、桩周岩体微裂纹断裂破坏3种可能的极限状态,基于岩体二维、三维Hoek-Brown(H-B)破坏准则、岩体微裂纹Ⅰ-Ⅱ型复合判据,提出4种大直径嵌岩桩桩端岩体极限承载力的计算方法.引用现有实测数据对所提出的计算方法进行对比分析和验证,结果表明所提出的4种计算方法均比较接近实测值,尤其是基于Ⅰ-Ⅱ型复合判据的桩周岩体微裂纹断裂的桩端极限承载力计算结果与实测值最为接近.进一步研究了大直径嵌岩桩的尺寸效应,研究表明,桩端极限荷载与嵌岩深度及桩径密切相关,嵌岩桩桩端极限荷载随嵌固深度的增大而增大,而随桩径的增大而减小.4种计算方法中基于Ⅰ-Ⅱ型复合判据的桩周岩体微裂纹断裂计算方法与现场实测规律更加相符.
Abstract:
To obtain the ultimate bearing capacity of the large diameter rock-socketed piles, three ultimate states of the rock mass on the pile tip are considered, which are the continuous slip failure on the pile tip, the shear failure surrounding the pile tip and the fracture of the micro-cracks surrounding the pile tip. Based on two-dimensional, three-dimensional Hoek-Brown failure criteria and the micro-crack Ⅰ-Ⅱ composite criterion, four calculation methods for the ultimate bearing capacity of the pile end on the large diameter rock-socketed piles are proposed. Using the existed measured data, the proposed calculation methods are analyzed and verified. The results of the four proposed methods are close to the measured values, especially the result of the calculation method based on the Ⅰ-Ⅱ composite criterion considering the fracture of the micro-cracks surrounding the pile tip. The size effect on the large diameter rock-socketed piles is further studied. The result show that the ultimate bearing load of the pile end is closely related to the rock-socketed depth and pile diameter, and the results show that the ultimate bearing load of the rock-socketed pile increases with the increasing of the rock-socketed depth and decreases with the increasing of the pile diameter. The results obtained by the calculation method based on the Ⅰ-Ⅱ composite criterion considering the fracture of the micro-cracks surrounding the pile tip are consistent with the observed results from the field among the four calculation methods.

参考文献/References:

[1] 龚维明, 戴国亮, 宋晖. 大直径深长嵌岩桩承载机理研究与应用[M]. 北京:人民交通出版社, 2010:1-10.
[2] Leung C F, Ko H Y. Centrifuge model study of piles socketed in soft rock[J]. Soils and Foundations, 1993, 33(3):80-91. DOI:10.3208/sandf1972.33.3_80.
[3] 中华人民共和国住房和城乡建设部. JGJ 94—2008建筑桩基技术规范[S]. 北京:中国建筑工业出版社, 2008.
[4] Zhang L Y, Einstein H H. End bearing capacity of drilled shafts in rock[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(7):574-584. DOI:10.1061/(ASCE)1090-0241(1998)124:7(574).
[5] Hoek E, Wood D, Shah S. A modified Hoek-Brown failure criterion for jointed rock masses[C]//Proceedings of the Rock Characterization Symposium of ISRM. London:British Geotechnical Society, 1992:209-214. DOI:10.1680/rc.35621.0037.
[6] Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown failure criterion—2002 edition[C]//Proceedings of the North American Rock Mechanics Society NARMS-TAC. Toronto,Canada:University of Toronto Press, 2002: 267-273.
[7] 朱合华, 张琦, 章连洋. Hoek-Brown强度准则研究进展与应用综述[J]. 岩石力学与工程学报, 2013, 32(10):1945-1963.
  Zhu Hehua, Zhang Qi, Zhang Lianyang. Review of research progresses and applications of Hoek-Brown strength criterion [J]. Chinese Journal of Rock Mechanics and Engineering, 2013,32(10):1945-1963.(in Chinese)
[8] 李镜培, 王勇刚. 嵌岩桩桩端承载力探讨[J]. 力学季刊, 2006, 27(1):118-123. DOI:10.3969/j.issn.0254-0053.2006.01.016.
Li Jingpei, Wang Yonggang. Study of tip resistance on rock socketed pile[J]. Chinese Quarterly of Mechanics, 2006, 27(1):118-123. DOI:10.3969/j.issn.0254-0053.2006.01.016. (in Chinese)
[9] 董鑫, 白良, 肖建军, 等. 应力空间内主应力及主方向的解析表达式[J].昆明理工大学学报(理工版), 2004, 29(1):89-92,96. DOI:10.3969/j.issn.1007-855X.2004.01.023.
Dong Xin, Bai Liang, Xiao Jianjun, et al. Parsed currency formula of main stress and main direction in stress space[J]. Journal of Kunming University of Science and Technology(Science and Technology), 2004, 29(1):89-92,96. DOI:10.3969/j.issn.1007-855X. 2004.01.023. (in Chinese)
[10] Zhang L Y, Zhu H H. Three-dimensional Hoek-Brown strength criterion for rocks[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(9):1128-1135. DOI:10.1061/(ASCE)1090-0241(2007)133:9(1128).
[11] Zhang L Y. A generalized three-dimensional Hoek-Brown strength criterion[J]. Rock Mechanics and Rock Engineering, 2008, 41(6):893-915. DOI:10.1007/s00603-008-0169-8.
[12] 唐辉明, 晏同珍. 岩体断裂力学理论与工程应用[M]. 武汉:中国地质大学出版社, 1993:8-18.
[13] 潘别桐, 唐辉明. 岩石压剪性断裂特性及Ⅰ-Ⅱ型复合断裂判据[J]. 地球科学——中国地质大学学报, 1988, 13(4):413-421.
  Pan Bietong, Tang Huiming. The characteristics of the compression-shear fracture in rocks and the Ⅰ-Ⅱ composite fracture criterion[J]. Earth Science—Journal of China University of Geosciences, 1988, 13(4):413-421.(in Chinese)
[14] 李世愚. 岩石断裂力学导论[M]. 合肥:中国科学技术大学出版社, 2010:99-107.
[15] 郑安兴, 罗先启. 压剪应力状态下岩石复合型断裂判据的研究[J]. 岩土力学, 2015, 36(7):1892-1898. DOI:10.16285/j.rsm. 2015.07.009.
Zheng Anxing, Luo Xianqi. Research on combined fracture criterion of rock under compression(shear stress[J]. Journal of Rock and Soil Mechanics, 2015, 36(7):1892-1898. DOI:10.16285/j.rsm.2015.07.009. (in Chinese)
[16] Zhang Z X. An empirical relation between mode Ⅰ fracture toughness and the tensile strength of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(3):401-406. DOI: 10.1016/S1365-1609(02)00032-1.
[17] Gercek H. Properties of failure envelopes and surfaces defined by the Hoek-Brown failure criterion[C]//Proceedings of the 6th Regional Rock Mechanics Symposium. Konya, Republic of Turkey, 2002: 3-11.
[18] 冯增朝, 赵阳升.岩体裂隙尺度对其变形与破坏的控制作用[J].岩石力学与工程学报, 2008, 27(1): 78-83.DOI: 10.3321/j.issn: 1000-6915.2008.01.012.
Feng Zengzhao, Zhao Yangsheng.Control effect of fissure scale on deformation and failure of rock mass[J].Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 78-83.DOI:10.3321/j.issn: 1000-6915.2008.01.012. (in Chinese)
[19] 龚成中.大直径嵌岩桩基承载特性的理论分析和实验研究[D].南京: 东南大学土木工程学院, 2014.

相似文献/References:

[1]邱钰,刘松玉,周琳.嵌岩桩单桩沉降计算的一种简化模型[J].东南大学学报(自然科学版),1999,29(5):131.[doi:10.3969/j.issn.1001-0505.1999.05.027]
 Qiu Yu,Liu Songyu,Zhou Lin.A Simplified Model for Single Pile Settlement Calculation of Rock-Socketed Piles[J].Journal of Southeast University (Natural Science Edition),1999,29(1):131.[doi:10.3969/j.issn.1001-0505.1999.05.027]

备注/Memo

备注/Memo:
收稿日期: 2017-05-21.
作者简介: 张琦(1984—),男,博士,讲师,zhangqi@seu.edu.cn.
基金项目: 国家自然科学基金青年基金资助项目(41602300)、江苏省青年基金资助项目(BK20150618)、中国矿业大学深部岩土力学与地下工程国家重点实验室开放基金资助项目(SKLGDUEK1503)、贵州省交通厅科技资助项目(2015-122-051).
引用本文: 张琦,刘军,戴国亮,等.大直径嵌岩桩桩端极限承载力计算方法[J].东南大学学报(自然科学版),2018,48(1):118-124. DOI:10.3969/j.issn.1001-0505.2018.01.018.
更新日期/Last Update: 2018-01-20