[1]王攀,陈强,戴元伦,等.基于FEM-DMF的耦合损耗因子预示精度分析[J].东南大学学报(自然科学版),2018,48(1):125-131.[doi:10.3969/j.issn.1001-0505.2018.01.019]
 Wang Pan,Chen Qiang,Dai Yuanlun,et al.Analysis on predictive accuracy of coupling loss factor based on FEM-DMF[J].Journal of Southeast University (Natural Science Edition),2018,48(1):125-131.[doi:10.3969/j.issn.1001-0505.2018.01.019]
点击复制

基于FEM-DMF的耦合损耗因子预示精度分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第1期
页码:
125-131
栏目:
机械工程
出版日期:
2018-01-20

文章信息/Info

Title:
Analysis on predictive accuracy of coupling loss factor based on FEM-DMF
作者:
王攀12陈强12戴元伦3费庆国12张鹏12李彦斌24
1东南大学土木工程学院, 南京 210096; 2东南大学空天机械动力学研究所, 南京 211189; 3中国船舶重工集团公司第701研究所, 武汉 430064; 4东南大学机械工程学院, 南京 211189
Author(s):
Wang Pan12 Chen Qiang12 Dai Yuanlun3 Fei Qingguo12 Zhang Peng12 Li Yanbin24
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2Institute of Aerospace Machinery and Dynamics, Southeast University, Nanjing 211189, China
3No.701 Research and Development Institute, China Ship Industry Corporation, Wuhan 430064, China
4School of Mechanical Engineering, Southeast University, Nanjing 211189, China
关键词:
耦合损耗因子 刚度比 结构阻尼 双模态方程 加筋板
Keywords:
coupling loss factor stiffness ratio structural damping dual modal formulation stiffened plate
分类号:
TH212;TH213.3
DOI:
10.3969/j.issn.1001-0505.2018.01.019
摘要:
基于有限元-双模态方程法(FEM-DMF)开展结构耦合损耗因子的预示精度研究.以典型L型耦合板为研究对象,通过与有限元-功率输入法(FEM-PIM)对比,深入研究了分析频带、子系统刚度比和结构阻尼对FEM-DMF方法预示耦合损耗因子精度的影响.以L型耦合加筋板为研究对象,验证FEM-DMF方法在复杂结构中的适用性.结果表明:在满足模态能量均一化假设的频带内,随着L型耦合板的子系统刚度比和结构阻尼的增大,FEM-DMF方法的预示精度不断提高;且随着结构阻尼的增大,满足耦合损耗因子预示精度的临界刚度比逐渐减小;对于L型耦合加筋板,在满足模态能量均一化假设的频带内,基于FEM-DMF方法预示的耦合损耗因子误差小于1 dB;而与FEM-PIM相比,FEM-DMF方法的计算效率提高了87.5%,从而说明FEM-DMF方法在其适用范围内能够准确高效地预示复杂结构的耦合损耗因子.
Abstract:
The predictive accuracy of a structural coupling loss factor is investigated based on the finite element-dual modal formulation(FEM-DMF)method. Taking the typical L-shaped plate as a research object, compared with the finite element-power injection method(FEM-PIM), the effects of frequency band, subsystem stiffness ratio and structural damping on the predictive accuracy of the coupling loss factor of FEM-DMF method are studied. A L-shaped stiffened plate is used to verify the applicability of FEM-DMF method on the complex structure.Results show that in the frequency band satisfying the assumption of modal energy homogenization, the accuracy of FEM-DMF method for the prediction of the coupling loss factor is improved with the increase of the stiffness ratio and the structural damping of L-shaped plate subsystems. The critical stiffness ratio of subsystems satisfying the accuracy of the coupling loss factor decreases with the increase of structural damping. For L-shaped stiffened plates, the error of the coupling loss factor predicted by the FEM-DMF method is less than 1 dB in the frequency band satisfying the assumption of modal energy homogenization. Compared with FEM-PIM, the computational efficiency of FEM-DMF method is increased by 87.5%, indicating that FEM-DMF method can predict the coupling loss factor of complex structure accurately and efficiently in the applicable scope.

参考文献/References:

[1] Lyon R H, Dejong R G. Theory and application of statistical energy analysis [M]. London: Butterworth-Heinemann, 1995: 3-16.
[2] 张婧雯, 孟光, 游进, 等. 基于统计能量法的声场-结构耦合模型高频振动隔振分析[J]. 振动与冲击, 2009, 28(12): 19-22. DOI:10.3969/j.issn.1000-3835.2009.12.006.
Zhang Jingwen, Meng Guang, You Jin, et al. Analysis on high frequency vibration isolation of coupled sound cavity-structure model based on statistical energy method [J]. Journal of Vibration and Shock, 2009, 28(12): 19-22. DOI:10.3969/j.issn.1000-3835.2009.12.006. (in Chinese)
[3] 马兴瑞, 韩增尧, 邹元杰, 等. 航天器力学环境分析与条件设计研究进展[J]. 宇航学报, 2012, 33(1): 1-12. DOI:10.3873/j.issn.1000-1328.2012.01.001.
Ma Xingrui, Han Zengyao, Zou Yuanjie, et al. Review and assessment of spacecraft mechanical environment analysis and specification determination [J]. Journal of Astronautics, 2012, 33(1): 1-12. DOI:10.3873/j.issn.1000-1328.2012.01.001. (in Chinese)
[4] 张娟, 李天匀, 朱翔, 等. 基于AutoSEA2的船舶典型动力源辐射噪声分析[J]. 船舶力学, 2008, 12(5): 819-823. DOI:10.3969/j.issn.1007-7294.2008.05.021.
Zhang Juan, Li Tianyun, Zhu Xiang, et al. Analysis of sound radiation induced by typical engine in the ship on the basis of AutoSEA2 [J]. Journal of Ship Mechanics, 2008, 12(5): 819-823. DOI:10.3969/j.issn.1007-7294.2008.05.021. (in Chinese)
[5] 向树红, 王大钧, 于丹, 等. 统计能量分析参数的综合确定方法及应用[J]. 振动工程学报, 2004, 17(4): 477-482. DOI:10.3969/j.issn.1004-4523.2004.04.021.
Xiang Shuhong, Wang Dajun, Yu Dan, et al. Comprehensive method of statistical energy analysis parameters determination and its applications [J]. Journal of Vibration Engineering, 2004, 17(4): 477-482. DOI:10.3969/j.issn.1004-4523.2004.04.021. (in Chinese)
[6] 江民圣, 牛军川, 郑建华, 等. L型耦合板结构能量传递系数特性的研究[J]. 振动与冲击, 2015, 34(17): 131-136. DOI:10.13465/j.cnki.jvs.2015.17.022.
Jiang Minsheng, Niu Junchuan, Zheng Jianhua, et al. Energy transfer coefficients’ features of L-shaped coupled plates [J]. Journal of Vibration and Shock, 2015, 34(17): 131-136. DOI:10.13465/j.cnki.jvs.2015.17.022. (in Chinese)
[7] Pankaj A C, Sridhar S, Murigendrappa S M. A comparison of different methods for determination of coupling factor and velocity response of coupled plates [J]. Journal of Vibroengineering, 2013, 15(4): 1885-1896.
[8] Mace B R, Shorter P J. Energy flow models from finite element analysis [J]. Journal of Sound and Vibration, 2000, 233(3): 369-389. DOI:10.1006/jsvi.1999.2812.
[9] Bies D A, Hamid S. In situ determination of loss and coupling loss factors by the power injection method [J]. Journal of Sound and Vibration, 1980, 70(2): 187-204. DOI:10.1016/0022-460x(80)90595-7.
[10] Lalor N. The experimental determination of vibrational energy balance in complex structures [C]//Stress and Vibration: Recent Developments in Measurement and Analysis. London: International Society for Optics and Photonics, 1989: 302-314.
[11] 张鹏, 费庆国, 李彦斌, 等. 材料物性热效应对统计能量分析参数的影响[J]. 振动与冲击, 2016, 35(24): 73-78. DOI:10.13465/j.cnki.jvs.2016.24.012.
Zhang Peng, Fei Qingguo, Li Yanbin, et al. Effect of temperature-dependent material property on statistical energy analysis parameters [J]. Journal of Vibration and Shock, 2016, 35(24): 73-78. DOI:10.13465/j.cnki.jvs.2016.24.012. (in Chinese)
[12] 陈强, 张鹏, 李彦斌, 等. 基于FEM-PIM计及热效应的统计能量分析[J]. 航空动力学报, 2017, 32(6): 1366-1374.
  Chen Qiang, Zhang Peng, Li Yanbin, et al. Statistical energy analysis under thermal environment based on FEM-PIM [J]. Journal of Aerospace Power, 2017, 32(6): 1366-1374.(in Chinese)
[13] Maxit L, Guyader J L. Estimation of SEA coupling loss factors using a dual formulation and FEM modal information Part 2: Numerical applications [J]. Journal of Sound and Vibration, 2001, 239(5): 931-948. DOI:10.1006/jsvi.2000.3193.
[14] 孔宪仁, 王英诚, 张红亮. 基于DFM/FEM铝蜂窝夹层结构耦合损耗因子预测[J]. 振动与冲击, 2016, 35(1): 125-131. DOI:10.13465/j.cnki.jvs.2016.01.021.
Kong Xianren, Wang Yingcheng, Zhang Hongliang. Coupling loss factors estimation of aluminum honeycomb sandwich structures using DFM/FEM [J]. Journal of Vibration and Shock, 2016, 35(1): 125-131. DOI:10.13465/j.cnki.jvs.2016.01.021. (in Chinese)
[15] Maxit L, Guyader J L. Estimation of SEA coupling loss factors using a dual formulation and FEM modal information. Part 1: Theory [J]. Journal of Sound and Vibration, 2001, 239(5): 907-930. DOI:10.1006/jsvi.2000.3192.
[16] 姚德源, 王其政. 统计能量分析原理及其应用 [M]. 北京: 北京理工大学出版社, 1995: 2-7.

相似文献/References:

[1]刘鑫,刘伟庆,王曙光,等.加固加层隔震结构阻尼比特性的振动台试验[J].东南大学学报(自然科学版),2012,42(6):1151.[doi:10.3969/j.issn.1001-0505.2012.06.024]
 Liu Xin,Liu Weiqing,Wan Shuguang,et al.Shaking table test of damping ratio of strengthening-adding-story isolation structures[J].Journal of Southeast University (Natural Science Edition),2012,42(1):1151.[doi:10.3969/j.issn.1001-0505.2012.06.024]

备注/Memo

备注/Memo:
收稿日期: 2017-07-18.
作者简介: 王攀(1993—), 男, 硕士生; 费庆国(联系人), 男, 博士, 教授, 博士生导师, qgFei@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(11572086,11402052)、江苏省自然科学基金资助项目(BK20170656,BK20170022)、江苏省研究生科研与实践创新计划资助项目(KYCX17_0054).
引用本文: 王攀,陈强,戴元伦,等.基于FEM-DMF的耦合损耗因子预示精度分析[J].东南大学学报(自然科学版),2018,48(1):125-131. DOI:10.3969/j.issn.1001-0505.2018.01.019.
更新日期/Last Update: 2018-01-20