[1]张文明,葛耀君.考虑风速空间分布的三塔悬索桥静风稳定分析[J].东南大学学报(自然科学版),2018,48(1):152-156.[doi:10.3969/j.issn.1001-0505.2018.01.023]
 Zhang Wenming,Ge Yaojun.Aerostatic stability analysis of suspension bridge with three towers considering spatial distribution of wind speed[J].Journal of Southeast University (Natural Science Edition),2018,48(1):152-156.[doi:10.3969/j.issn.1001-0505.2018.01.023]
点击复制

考虑风速空间分布的三塔悬索桥静风稳定分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第1期
页码:
152-156
栏目:
交通运输工程
出版日期:
2018-01-20

文章信息/Info

Title:
Aerostatic stability analysis of suspension bridge with three towers considering spatial distribution of wind speed
作者:
张文明1葛耀君2
1东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096; 2同济大学土木工程防灾国家重点实验室, 上海 200092
Author(s):
Zhang Wenming1 Ge Yaojun2
1Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
2State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
关键词:
三塔悬索桥 风速空间分布 静风稳定 非线性
Keywords:
suspension bridge with three towers spatial distribution of wind speed aerostatic stability nonlinearity
分类号:
U448.25
DOI:
10.3969/j.issn.1001-0505.2018.01.023
摘要:
为了研究平均风速空间分布对大跨桥梁静风稳定性的影响,将风速空间分布系数引入到大跨桥梁静风稳定性计算中,建立了考虑风速空间分布的静风稳定分析方法.以马鞍山大桥为算例,分析了平均风沿展向的不均匀分布对三塔悬索桥静风失稳临界风速和失稳形态的影响.结果表明:风速非对称分布且风速最大值位于任一跨跨中时的静风失稳临界风速最低.风速非对称分布时,低风速下两跨扭转位移和竖向位移的变化趋势类似,随着风速增长,风速较大的一跨变形加剧,由于主缆的牵扯作用,另一跨只能以相反的趋势变化.风速空间分布对三塔悬索桥静风稳定具有较大影响,不可忽略.
Abstract:
To study the effects of the spatial distribution of the average wind speed on the aerostatic stability of long-span bridges, the aerostatic stability analysis method considering the spatial distribution of the wind speed was put forward by introducing the wind speed spatial distribution coefficient. By taking the Maanshan Bridge as an example, the effects of the wind speed spatial non-uniformity along the deck on the critical wind speed and the aerostatic instability configuration were analyzed. The results show that the critical wind speed of the aerostatic instability is the lowest when the wind speed is asymmetrically distributed and the maximum wind speed is at the one of the two midspans. When the wind speed is asymmetrically distributed, the torsional and the vertical displacements at the lower wind speeds exhibit the same change tendency. However, the deformations of the span with the higher wind speeds intensify with the increase of the wind speed, and those of the other span change with the opposite trend due to the dragging influence of the main cables. The spatial distribution of the wind speed has a considerable and non-negligible effect on the aerostatic stability of suspension bridges with three towers.

参考文献/References:

[1] Wang H, Tao T, Zhou R, et al. Parameter sensitivity study on flutter stability of a long-span triple-tower suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 128: 12-21. DOI:10.1016/j.jweia.2014.03.004.
[2] Zhang W M, Ge Y J. Wind tunnel investigation on flutter and buffeting of a three-tower suspension bridge[J]. Wind and Structures, 2017, 24(4): 367-384. DOI:10.12989/was.2017.24.4.367.
[3] Hirai A, Okauchi I, Ito M, et al. Studies on the critical wind velocity for suspension bridges[C]//A Seminar on Wind Effects on Buildings and Structures. Ontario, Canada, 1968: 81-103.
[4] 项海帆, 葛耀君.悬索桥跨径的空气动力极限[J]. 土木工程学报, 2005, 38(1): 60-70. DOI:10.3321/j.issn:1000-131X.2005.01.008.
Xiang Haifan, Ge Yaojun. On aerodynamic limits to suspension bridges[J]. China Civil Engineering Journal, 2005, 38(1): 60-70. DOI:10.3321/j.issn:1000-131X.2005.01.008. (in Chinese)
[5] Boonyapinyo V, Lauhatanon Y, Lukkunaprasit P. Nonlinear aerostatic stability analysis of suspension bridges[J]. Engineering Structures,2006,28(5):793-803.
[6] Boonyapinyo V, Yamada H, Miyata T. Wind-induced nonlinear lateral-torsional buckling of cable-stayed bridges[J]. Journal of Structural Engineering, 1994, 120(2): 486-506.
[7] 程进, 肖汝诚, 项海帆. 大跨径斜拉桥非线性静风稳定性全过程分析[J]. 中国公路学报, 2000, 13(3): 25-28. DOI:10.3321/j.issn:1001-7372.2000.03.007.
Cheng Jin, Xiao Rucheng, Xiang Haifan. Full range nonlinear aerostatics analysis for long-span cable-stayed bridge[J]. China Journal of Highway and Transport, 2000, 13(3): 25-28. DOI:10.3321/j.issn:1001-7372.2000.03.007. (in Chinese)
[8] 周强, 周志勇, 葛耀君. 双主跨悬索桥静风失稳模式及其机理分析[J]. 哈尔滨工业大学学报, 2012,44(8):76-82.
  Zhou Qiang, Zhou Zhiyong, Ge Yaojun. Mode and mechanism of aerostatic stability for suspension bridges with double main spans[J]. Journal of Harbin Institute of Technology,2012,44(8): 76-82.(in Chinese)
[9] 邵亚会. 超大跨度钢箱梁悬索桥抗风动力和静力稳定性精细化研究[D]. 上海:同济大学桥梁工程系,2010.
[10] 张志田,陈政清,葛耀君,等. 紊流中大跨桥梁的扭转发散特性[J]. 工程力学,2010,27(2):108-116.
  Zhang Zhitian, Chen Zhengqing, Ge Yaojun, et al. Torsional divergence characteristics of long span bridge in turbulence[J]. Engineering Mechanics,2010,27(2):108-116.(in Chinese)
[11] Zhang Z T, Chen Z Q, Hua X G, et al. Investigation of turbulence effects on torsional divergence of long-span bridges by using dynamic finite-element method[J]. Journal of Bridge Engineering, 2010, 15(6):639-652.DOI:10.1061/(asce)be.1943-5592.0000101.
[12] 李翠娟,李永乐,强士中. 交叉吊索对超大跨CFRP主缆悬索桥静风失稳的抑制作用[J]. 振动与冲击,2016,35(17):177-184.
  Li Cuijuan, Li Yongle, Qiang Shizhong. Aerostatic stability improvement of a super large-span suspension bridge with CFRP cables using crossed hangers[J]. Journal of Vibration and Shock, 2016,35(17):177-184.(in Chinese)
[13] Zhang X. Influence of some factors on the aerodynamic behavior of long-span suspension bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(3): 149-164. DOI:10.1016/j.jweia.2006.08.003.
[14] 谢霁明, 项海帆. 桥梁三维颤振分析的状态空间法[J]. 同济大学学报,1985(3):1-13.
  Xie Jiming, Xiang Haifan. A state-space method for 3D flutter analysis of bridge structures[J]. Journal of Tongji University, 1985(3):1-13.(in Chinese)
[15] 张文明,葛耀君. 斜风作用下大跨度悬索桥非线性静风稳定分析[J]. 华中科技大学学报(自然科学版), 2009,37(11):111-114.
  Zhang Wenming, Ge Yaojun. Nonlinear aerostatic stability analysis of a long-span suspension bridge under yawed wind[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2009,37(11):111-114.(in Chinese)

相似文献/References:

[1]焦常科,李爱群,王浩,等.中央扣对三塔悬索桥地震反应的影响[J].东南大学学报(自然科学版),2010,40(1):160.[doi:10.3969/j.issn.1001-0505.2010.01.030]
 Jiao Changke,Li Aiqun,Wang Hao,et al.Influence of central buckle on seismic response of triple-tower suspension bridge[J].Journal of Southeast University (Natural Science Edition),2010,40(1):160.[doi:10.3969/j.issn.1001-0505.2010.01.030]
[2]王浩,陶天友,张玉平,等.行波输入下大跨度三塔悬索桥减震控制[J].东南大学学报(自然科学版),2017,47(2):343.[doi:10.3969/j.issn.1001-0505.2017.02.024]
 Wang Hao,Tao Tianyu,Zhang Yuping,et al.Seismic control of long-span triple-tower suspension bridge under travelling wave action[J].Journal of Southeast University (Natural Science Edition),2017,47(1):343.[doi:10.3969/j.issn.1001-0505.2017.02.024]

备注/Memo

备注/Memo:
收稿日期: 2017-07-19.
作者简介: 张文明(1983—),男,博士,副教授,zwm@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51678148).
引用本文: 张文明,葛耀君.考虑风速空间分布的三塔悬索桥静风稳定分析[J].东南大学学报(自然科学版),2018,48(1):152-156. DOI:10.3969/j.issn.1001-0505.2018.01.023.
更新日期/Last Update: 2018-01-20