[1]周心澄,黄治军,潘丹萍,等.燃煤电站超低排放烟气颗粒物排放测试及特性分析[J].东南大学学报(自然科学版),2018,48(2):240-247.[doi:10.3969/j.issn.1001-0505.2018.02.008]
 Zhou Xincheng,Huang Zhijun,Pan Danping,et al.Testing and characteristics analysis on onultra-low particulate matter emission of flue gas from coal-fired power plants[J].Journal of Southeast University (Natural Science Edition),2018,48(2):240-247.[doi:10.3969/j.issn.1001-0505.2018.02.008]
点击复制

燃煤电站超低排放烟气颗粒物排放测试及特性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第2期
页码:
240-247
栏目:
环境科学与工程
出版日期:
2018-03-20

文章信息/Info

Title:
Testing and characteristics analysis on onultra-low particulate matter emission of flue gas from coal-fired power plants
作者:
周心澄1黄治军2潘丹萍1胡斌1杨林军1
1东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 2江苏方天电力技术有限公司, 南京 211102
Author(s):
Zhou Xincheng1 Huang Zhijun2 Pan Danping1 Hu Bin1 Yang Linjun1
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2Jiangsu Frontier Electric Technology Co., Ltd., Nanjing 211102, China
关键词:
超低排放改造 除尘 湿法烟气脱硫 颗粒物 排放特性
Keywords:
ultra-low emission technology innovation dust removal wet flue gas desulfurization particulate matter emission characteristics
分类号:
X51
DOI:
10.3969/j.issn.1001-0505.2018.02.008
摘要:
针对5台应用超低排放技术的燃煤电站机组,对其除尘单元的烟尘深度脱除能力及湿法脱硫单元的协同除尘能力进行现场测试分析.结果表明,通过燃煤电站超低排放技术改造可显著降低烟尘排放水平.采用低低温电除尘、电袋复合、旋转电极及高频电源等技术对除尘单元进行超低排放改造,除尘设备出口烟尘浓度为10.89~22.94 mg/m3,除尘效率均在99.86%以上,且工况变化时脱除效率稳定.应用托盘、单塔双循环、双塔双循环等技术对湿法脱硫系统进行超低排放改造,测试期间WFGD系统出口烟尘排放浓度分别为2.09,10.48,20.40 mg/m3,WFGD系统协同除尘效率分别为87.18%,85.52%,79.80%.相比改造前烟尘协同脱除能力均有明显提升,其中双塔双循环WFGD系统对细颗粒的脱除能力显著高于单塔系统.
Abstract:
The dust removal capacity of the dedusting systems and the coordinated dust removal capacity of the wet flue gas desulfurization systems were tested in 5 coal-fired power plants with ultra-low emission technologies. The results show that the dust emission decreased obviously with the application of ultra-low emission technologies in power plants. With the low-low temperature economizer, electrostatic-fabric integrated precipitator, high-frequency power source technology, and rotating electrode electrostatic precipitator, the average concentrations of dust in the outlet of the precipitators are 10.89 to 22.94 mg/m3 and the dust removal efficiencies of the dedusting systems are higher than 99.86% in the range of 100%. With the tray tower technology, one-absorber two-section desulfurization technology and twin tower double circulation desulfurization technology, the average concentrations of dust in the outlet of the wet flue gas desulfurization systems are 2.09, 10.48, 20.40 mg/m3 respectively, and the dust removal efficiencies of WFGD are 87.18%, 85.52%, 79.80% respectively. The results also show that the removal efficiencies of fine particles in the twin tower double circulation desulfurization system are obviously higher than those in the single-tower system.

参考文献/References:

[1] Lai H K, Tsang H, Thach T Q, et al. Health impact assessment of exposure to fine particulate matter based on satellite and meteorological information[J]. Environmental Science Processes & Impacts, 2014, 16(2):239-246. DOI:10.1039/c3em00357d.
[2] 国家统计局能源统计司.中国能源统计年鉴2016[M].北京:中国统计出版社,2016:120-158.
[3] 中华人民共和国发展和改革会员会.关于印发《煤电节能减排升级与改造行动计划(2014—2020年)》的通知[EB/OL].(2014-09-12)[2017-08-01].http://www.zhb.gov.cn/gkml/hbb/gwy/201409/t20140925_289556.html.
[4] 中华人民共和国环境保护部.关于发布国家环境保护标准《火电厂污染防治可行技术指南》的公告[EB/OL].(2017-05-21)[2017-08-01].http://www.zhb.gov.cn/gkml/hbb/bgg/201705/t20170524_414652.html.
[5] 寿春晖, 祁志福, 谢尉扬,等. 低低温电除尘器颗粒物脱除特性的工程应用试验研究[J]. 中国电机工程学报, 2016, 36(16):4326-4332.DOI:10.13334/j.0258-8013.pcsee.160096.
Shou Chunhui, Qi Zhifu,Xie Weiyang, et al. Experimental study on engineering application of particulate matter removalcharacteristics of low-low temperature electrostatic precipitator[J].Proceedings of the CSEE, 2016, 36(16):4326-4332.DOI:10.13334/j.0258-8013.pcsee.160096. (in Chinese)
[6] 黄斌,姚强,宋蔷,等.静电对纤维滤料过滤飞灰颗粒的影响[J].中国电机工程学报,2006,26(24):106-110.DOI:10.13334/j.0258-8013.pcsee.2006.24.019.
Huang Bin, Yao Qiang, Song Qiang,et al.Effect of the electrostatics on the fibrous filter filtrating fly ash[J].Proceedings of the CSEE, 2006,26(24):106-110.DOI:10.13334/j.0258-8013.pcsee.2006.24.019. (in Chinese)
[7] 龙正伟,宋蔷,李水清,等.复合式电袋除尘器的伏安特性[J].中国电机工程学报,2010,30(14):13-20.DOI:10.13334/j.0258-8013.pcsee.2010.14.005.
Long Zhengwei, Song Qiang, Li Shuiqing, et al.Current-voltage characteristics of the hybrid particulate collector[J].Proceedings of the CSEE, 2010,30(14):13-20.DOI:10.13334/j.0258-8013.pcsee.2010.14.005. (in Chinese)
[8] 朱法华, 李辉, 王强. 高频电源在我国电除尘器上的应用及节能减排潜力分析[J]. 环境工程技术学报, 2011, 1(1):26-32.
  Zhu Fahua, Li Hui, Wang Qiang, Application of high frequency power supply for ESP in the power industry of china and its potential for energy saving and emission reducing[J]. Journal of Environmental Engineering Technology, 2011, 1(1):26-32.(in Chinese).
[9] Nakayama Y,Nakamura S,Takeuchi Y,et al.MHI high efficiency system-proven technology for multi pollutant removal[R].Hiroshima,Japan:Hiroshima Research & Development Center of Mitsubishi Heavy Industries,Ltd., 2011.
[10] 靳星.静电除尘器内细颗粒物脱除特性的技术基础研究[D].北京:清华大学热能工程系,2013.
[11] Bäck A. Enhancing ESP efficiency for high resistivity fly ash by reducing the flue gas temperature[C]//11th International Conference on Electrostatic Precipitation. Berlin:Springer, 2009: 406-411. DOI:10.1007/978-3-540-89251-9_82.
[12] 郦建国,郦祝海,何毓忠,等. 低低温电除尘技术的研究及应用[J]. 中国环保产业,2014(3):28-34.
  Li Jianguo,Li Zhuhai,He Yuzhong,et al.Research and application on low-low temperature electric precipitation technology [J].China Environmental Protection Industry, 2014(3):28-34.(in Chinese)
[13] Bickelhaupt R E, Altman R F. A method for predicting the effective volume resistivity of a sodium depleted fly ash layer[J]. Journal of the Air Pollution Control Association, 1984, 34(8):831-838.DOI:10.1080/00022470.1984.10465818.
[14] 赵永水. 燃煤电厂PM2.5微细颗粒物控制新技术——旋转电极式电除尘性能特点及安装技术[J]. 能源环境保护, 2012, 26(4):1-4.
  ZhaoYongshui.A new control technology for PM2.5from coal-fired power plant—the performance characteristics and erection technology of rotating electrode electrostatic precipitator[J].Energy Environmental Protection,2012, 26(4):1-4.(in Chinese)
[15] 杜乐,黄建国,殷文香. 一种提高石灰石-石膏法脱硫效率的方法——托盘塔[J]. 环境与发展,2014(3):196-198.
  Du Le,Huang Jianguo,Yin Wenxiang.A method for improving limestone-gypsum desulfurization efficiency—tray tower[J].Environment and Development,2014(3):196-198.(in Chinese)
[16] 张东辉,庄烨,朱润儒,等.燃煤烟气污染物超低排放技术及经济分析[J].电力建设,2015,36(5):125-130.
  Zhang Donghui, Zhuang Ye, Zhu Runru, et al.Ultra-low air pollutant control technologies for coal-fired flue gas and its economic analysis[J].Electric Power Construction,2015,36(5):125-130.(in Chinese)
[17] 卢泓樾.燃煤机组烟气污染物超低排放研究[J].电力科技与环保,2014,30(5):8-11.
  Lu Hongyue.Research of the domestic 600 MW supercritical coal-fired units ultra in low emissions of flue gas[J].Electric Power Technology and Environmental Protection,2014,30(5):8-11.(in Chinese)
[18] Meij R, Winkel B T. The emissions and environmental impact of PM10and trace elements from a modern coal-fired power plant equipped with ESP and wet FGD[J]. Fuel Processing Technology, 2004, 85(6/7):641-656.DOI:10.1016/j.fuproc.2003.11.012.
[19] Nielsen M T,Livbjerg H,Fogh C L,et al.Formation and emission of fine particles from two coal-fired power plants[J].Combustion Science and Technology,2002,174(2): 79-113.DOI:10.1080/714922606.
[20] Meij R. Trace element behavior in coal-fired power plants[J]. Fuel Processing Technology, 1994, 39(1/2/3):199-217.DOI:10.1016/0378-3820(94)90180-5.

相似文献/References:

[1]袁竹林,李伟力,魏星,等.细微颗粒在行波和驻波声场中运动特性数值实验[J].东南大学学报(自然科学版),2005,35(1):140.[doi:10.3969/j.issn.1001-0505.2005.01.030]
 Yuan Zhulin,Li Weili,Wei Xing,et al.Numerical simulation of moving behavior of PM2.5 in sound wave field[J].Journal of Southeast University (Natural Science Edition),2005,35(2):140.[doi:10.3969/j.issn.1001-0505.2005.01.030]

备注/Memo

备注/Memo:
收稿日期: 2017-08-30.
作者简介: 周心澄(1993—),女,硕士生;杨林军(联系人),男,博士,教授,博士生导师,ylj@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2016YFC0203703).
引用本文: 周心澄,黄治军,潘丹萍,等.燃煤电站超低排放烟气颗粒物排放测试及特性分析[J].东南大学学报(自然科学版),2018,48(2):240-247. DOI:10.3969/j.issn.1001-0505.2018.02.008.
更新日期/Last Update: 2018-03-20