[1]王同罕,贾惠珍,舒华忠.基于梯度幅度和梯度方向直方图的全参考图像质量评价算法[J].东南大学学报(自然科学版),2018,48(2):276-281.[doi:10.3969/j.issn.1001-0505.2018.02.014]
 Wang Tonghan,Jia Huizhen,Shu Huazhong.Full-reference image quality assessment algorithm based on gradient magnitude and histogram of oriented gradient[J].Journal of Southeast University (Natural Science Edition),2018,48(2):276-281.[doi:10.3969/j.issn.1001-0505.2018.02.014]
点击复制

基于梯度幅度和梯度方向直方图的全参考图像质量评价算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第2期
页码:
276-281
栏目:
信息与通信工程
出版日期:
2018-03-20

文章信息/Info

Title:
Full-reference image quality assessment algorithm based on gradient magnitude and histogram of oriented gradient
作者:
王同罕1贾惠珍1舒华忠2
1东华理工大学江西省放射性地学大数据技术工程实验室, 南昌 330013; 2东南大学影像科学与技术实验室, 南京 210096
Author(s):
Wang Tonghan1 Jia Huizhen1 Shu Huazhong2
1Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, China
2Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
关键词:
图像质量评价 全参考 梯度幅度 梯度方向直方图
Keywords:
image quality assessment full reference gradient magnitude histogram of oriented gradient
分类号:
TN911.73
DOI:
10.3969/j.issn.1001-0505.2018.02.014
摘要:
为了提高全参考图像质量评价算法的性能,提出了一种基于梯度幅度和梯度方向直方图的图像质量评价算法.梯度方向直方图可以描述图像中局部物体表象和形状,梯度幅度能精细地反应图像中微小细节的反差和纹理变化.分别计算参考图像和失真图像的梯度幅度和梯度方向直方图,然后计算梯度幅度相似度图和梯度方向直方图相似度图,最后通过标准方差加权的方式得到图像的预测质量分数.在 LIVE,TID2008和IVC三个图像数据库上的实验结果表明,所提算法的预测结果与人的主观判断具有较好的一致性.
Abstract:
To improve the performance of full-reference image quality assessment(IQA)algorithms, an IQA algorithm based on the gradient magnitude(GM)and the histogram of the oriented gradient(HOG)is proposed.The HOG can characterize the representation and the shape of the local object, and the GM can finely reflect the potential tiny changes in texture and detail. The gradient magnitude and the histogram of the oriented gradient of the reference image and the distorted image are computed. Then the similarity maps of the gradient magnitude and the histogram of the oriented gradient are calculated. Finally, the predictive quality score is obtained by using the standard deviation method.The experimental results on LIVE, TID2008 and IVC databases show that the proposed algorithm has a good performance in term of correlation with human judgments.

参考文献/References:

[1] Wang Z, Bovik A. Modern image quality assessment[J]. Synthesis Lectures on Image Video & Multimedia Processing, 2006, 2(1):1-156.
[2] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Trans Image Process, 2004, 13(4): 600-612. DOI:10.1109/tip.2003.819861.
[3] Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment[C]//The Thirty-Seventh Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA, 2003: 1398-1402. DOI:10.1109/acssc.2003.1292216.
[4] Wang Z, Li Q. Information content weighting for perceptual image quality assessment[J]. IEEE Trans Image Process, 2011, 20(5): 1185-1198. DOI:10.1109/TIP.2010.2092435.
[5] Sheikh H R, Bovik A C, de Veciana G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Trans Image Process, 2005, 14(12): 2117-2128. DOI:10.1109/tip.2005.859389.
[6] Sheikh H R, Bovik A C. Image information and visual quality[J]. IEEE Trans Image Process, 2006, 15(2): 430-444. DOI:10.1109/tip.2005.859378.
[7] Chandler D M. Most apparent distortion:Full-reference image quality assessment and the role of strategy[J]. Journal of Electronic Imaging, 2010, 19(1): 011006-1-011006-21. DOI:10.1117/1.3267105.
[8] Zhang L, Zhang L, Mou X, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Trans Image Process, 2011, 20(8): 2378-2386. DOI:10.1109/TIP.2011.2109730.
[9] Zhang L, Shen Y, Li H. VSI:A visual saliency-induced index for perceptual image quality assessment[J]. IEEE Trans Image Process, 2014, 23(10): 4270-4281. DOI:10.1109/TIP.2014.2346028.
[10] Liu A, Lin W, Narwaria M. Image quality assessment based on gradient similarity[J]. IEEE Trans Image Process, 2012, 21(4): 1500-1512. DOI:10.1109/TIP.2011.2175935.
[11] Xue W, Zhang L, Mou X, et al. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index[J]. IEEE Trans Image Process, 2014, 23(2): 684-695. DOI:10.1109/TIP.2013.2293423.
[12] Wang T, Zhang L, Jia H, et al. Multiscale contrast similarity deviation: An effective and efficient index for perceptual image quality assessment[J]. Signal Processing: Image Communication, 2016, 45: 1-9. DOI:10.1016/j.image.2016.04.005.
[13] Shi Z, Chen K, Pang K, et al. A perceptual image quality index based on global and double-random window similarity[J]. Digital Signal Processing, 2017, 60: 277-286. DOI:10.1016/j.dsp.2016.09.013.
[14] Shi Z, Zhang J, Cao Q, et al. Full-reference image quality assessment based on image segmentation with edge feature[J]. Signal Processing, 2018, 145: 99-105. DOI:10.1016/j.sigpro.2017.11.015.
[15] Xing L, Cai L, Zeng H, et al. A multi-scale contrast-based image quality assessment model for multi-exposure image fusion[J]. Signal Processing, 2018, 145: 233-240. DOI:10.1016/j.sigpro.2017.12.013.
[16] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05). San Diego, CA, USA, 2005:886-893.DOI:10.1109/cvpr.2005.177.
[17] Sheikh H, Wang Z, Cormack L, et al. LIVE image quality assessment database release 2 [EB/OL].(2005)[2017-06-02].http: //live. ece. utexas.edu/research/ quality.
[18] Ponomarenko N, Lukin V, Zelensky A, et al. TID2008—A database for evaluation of full-reference visual quality assessment metrics[J]. Adv Modern Radioelectron, 2004, 10(4):30-45.
[19] Ninassi A, le Callet P, Autrusseau F. Pseudo no reference image quality metric using perceptual data hiding[C]//Proceedings of SPIE Human Vision and Electronic Imaging. San Jose, CA, USA, 2006: 146-157. DOI:10.1117/12.650780.
[20] Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms[J]. IEEE Trans Image Process, 2006, 15(11): 3440-3451. DOI:10.1109/tip.2006.881959.

相似文献/References:

[1]骞森,朱剑英.基于奇异值分解的图像质量评价[J].东南大学学报(自然科学版),2006,36(4):643.[doi:10.3969/j.issn.1001-0505.2006.04.032]
 Qian Sen,Zhu Jianying.Image quality measure using singular value decomposition[J].Journal of Southeast University (Natural Science Edition),2006,36(2):643.[doi:10.3969/j.issn.1001-0505.2006.04.032]

备注/Memo

备注/Memo:
收稿日期: 2017-10-05.
作者简介: 王同罕(1984—),男,博士,讲师,thwang-seu@163.com.
基金项目: 国家自然科学基金资助项目(61762004)、江西省教育厅科学技术研究资助项目(GJJ170427)、东华理工大学江西省放射性地学大数据技术工程实验室开放基金资助项目(JELRGBDT201702)、东华理工大学博士启动基金资助项目(DHBK2016119, DHBK2016120).
引用本文: 王同罕,贾惠珍,舒华忠.基于梯度幅度和梯度方向直方图的全参考图像质量评价算法[J].东南大学学报(自然科学版),2018,48(2):276-281. DOI:10.3969/j.issn.1001-0505.2018.02.014.
更新日期/Last Update: 2018-03-20