[1]崔浩然,吴刚,冯德成,等.损伤可控摇摆墙滞回性能分析[J].东南大学学报(自然科学版),2018,48(2):288-293.[doi:10.3969/j.issn.1001-0505.2018.02.016]
 Cui Haoran,Wu Gang,Feng Decheng,et al.Hysteretic behavior analysis of damage-controllable rocking wall[J].Journal of Southeast University (Natural Science Edition),2018,48(2):288-293.[doi:10.3969/j.issn.1001-0505.2018.02.016]
点击复制

损伤可控摇摆墙滞回性能分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第2期
页码:
288-293
栏目:
土木工程
出版日期:
2018-03-20

文章信息/Info

Title:
Hysteretic behavior analysis of damage-controllable rocking wall
作者:
崔浩然吴刚冯德成张简许嘉辉
东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京210096
Author(s):
Cui Haoran Wu Gang Feng Decheng Zhang Jian Xu Jiahui
Key Laboratory for Concrete and Pre-stressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
损伤可控 摇摆墙 自复位 可更换 角部单元
Keywords:
damage-controllable rocking wall self-centering replaceable corner element
分类号:
TU352
DOI:
10.3969/j.issn.1001-0505.2018.02.016
摘要:
提出了一种布置于结构内部,由摇摆体、角部单元、连接梁、可更换剪切阻尼器、预应力筋等组成的损伤可控摇摆墙.将摇摆体简化为刚体,角部单元简化为弹性体,分析推导了损伤可控摇摆墙在往复荷载作用下的几何特性和滞回性能.通过参数化分析,研究预应力筋锚固位置、角部材料、剪切阻尼器等对损伤可控摇摆墙滞回性能的影响.结果表明:将预应力筋锚固于上下连接梁并施加较大初始预应力,可提高损伤可控摇摆墙的自复位性能;角部材料弹性模量的提高会增大损伤可控摇摆墙抗侧刚度,减小支撑点应力集中;阻尼器刚度和屈服力的提高可增大损伤可控摇摆墙的耗能能力.
Abstract:
A damage-controllable rocking wall which is installed inside the structures is developed. The wall is consists of rocking elements, corner elements, connecting beams, replaceable sheering dampers, and prestressed tendons. By simplifying the rocking element as a rigid body and the corner element as an elastomer, the geometric characteristics and the hysteretic behaviors of the damage-controllable rocking wall are theoretically derived. The influences of the anchor position of the prestressed tendons, material of the corner elements and the dampers on the hysteretic behaviors of the wall are investigated by parametric analysis. The results indicate that the prestressed tendons anchored at the connecting beams with large initial force can improve the self-centering capability of the wall. The increase of the elastic modulus of the corner elements can improve the lateral stiffness of the wall and reduce the effect of stress concentration at the support points. The energy dissipation capability of the wall can be enhanced by increasing the stiffness and the yield strength of the dampers.

参考文献/References:

[1] Housner G W. The behavior of inverted pendulum structures during earthquakes[J]. Bulletin of the Seismological Society of America, 1963, 53(2): 403-417.
[2] 周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9): 1-10.
  Zhou Ying, Lü Xilin. State-of-the-art on rocking and self-centering structures[J]. Journal of Building Structures,2011, 32(9): 1-10.(in Chinese)
[3] Eatherton M R, Hajjar J F, Deierlein G G, et al. Controlled rocking of steel-framed buildings with replaceable energy-dissipating fuses[C]//The 14th World Conference on Earthquake Engineering. Beijing, 2008:1-8.
[4] Gu M, Pang W, Schiff S. Displacement design procedure for cross laminated timber(CLT)rocking walls with sacrificial dampers[C]//Proceedings of the 2015 Structures Congress. Oregon, Portland: ASCE, 2015: 2777-2791.DOI:10.1061/9780784479117.241.
[5] 胡晓斌, 贺慧高, 彭真, 等. 往复荷载作用下自复位墙滞回性能研究[J]. 建筑结构学报, 2013, 34(11): 18-23.
  Hu Xiaobin, He Huigao, Peng Zhen, et al. Study on the hysteretic performance of self-centering wall subjected to reversal loading[J]. Journal of Building Structures, 2013, 34(11): 18-23.(in Chinese)
[6] Roh H S. Seismic behavior of structures using rocking columns and viscous dampers[D]. Buffalo, USA: Department of Civil, Structural and Environmental Engineering, University at Buffalo, the State University of New York, 2007.
[7] Roh H, Reinhorn A M. Analytical modeling of rocking elements[J]. Engineering Structures, 2009, 31(5): 1179-1189. DOI:10.1016/j.engstruct.2009.01.014.
[8] Roh H, Reinhorn A M. Nonlinear static analysis of structures with rocking columns[J]. Journal of Structural Engineering, 2010, 136(5): 532-542. DOI:10.1061/(asce)st.1943-541x.0000154.
[9] Roh H, Reinhorn A M. Modeling and seismic response of structures with concrete rocking columns and viscous dampers[J]. Engineering Structures, 2010, 32(8): 2096-2107. DOI:10.1016/j.engstruct.2010.03.013.
[10] Preti M, Meda A. RC structural wall with unbonded tendons strengthened with high-performance fiber-reinforced concrete[J]. Materials and Structures, 2013, 48(1): 249-260. DOI:10.1617/s11527-013-0180-8.
[11] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7): 941-948.
  Lü Xilin, Chen Yun, Mao Yuanjun. New concept of structural seismic design: Earthquake resilient structures[J]. Journal of Tongji University(Natural Science), 2011, 39(7): 941-948.(in Chinese)
[12] 郝建兵. 损伤可控结构的地震反应分析及设计方法研究[D]. 南京: 东南大学土木工程学院, 2015.
[13] 党像梁, 吕西林, 周颖. 底部开水平缝预应力自复位剪力墙试验设计及结果分析[J]. 地震工程与工程振动, 2014, 34(6):103-112.
  Dang Xiangliang, Lü Xilin, Zhou Ying. Experimental design and measured behavior analysis of self-centering shear walls with horizontal bottom slit [J]. Journal of Earthquake Engineering and Engineering Vibration, 2014, 34(6): 103-112.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2017-09-21.
作者简介: 崔浩然(1991—),男,博士生;吴刚(联系人),男,博士,教授,博士生导师,g.wu@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51525801)、海外及港澳学者合作研究基金资助项目(51528802).
引用本文: 崔浩然,吴刚,冯德成,等.损伤可控摇摆墙滞回性能分析[J].东南大学学报(自然科学版),2018,48(2):288-293. DOI:10.3969/j.issn.1001-0505.2018.02.016.
更新日期/Last Update: 2018-03-20