[1]杨晓燕,冯玉龙,吴京,等.底部带屈曲约束支撑的摇摆桁架抗震性能试验研究[J].东南大学学报(自然科学版),2018,48(2):303-309.[doi:10.3969/j.issn.1001-0505.2018.02.018]
 Yang Xiaoyan,Feng Yulong,Wu Jing,et al.Experimental study on seismic performance of hinged truss with buckling-restrained braces at base[J].Journal of Southeast University (Natural Science Edition),2018,48(2):303-309.[doi:10.3969/j.issn.1001-0505.2018.02.018]
点击复制

底部带屈曲约束支撑的摇摆桁架抗震性能试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第2期
页码:
303-309
栏目:
土木工程
出版日期:
2018-03-20

文章信息/Info

Title:
Experimental study on seismic performance of hinged truss with buckling-restrained braces at base
作者:
杨晓燕1冯玉龙2吴京1庞熙熙3
1东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096; 2合肥工业大学土木与水利工程学院, 合肥 230009; 3国网经济技术研究院有限公司徐州勘测设计中心, 徐州 221005
Author(s):
Yang Xiaoyan1 Feng Yulong2 Wu Jing1 Pang Xixi3
1Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
2School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
3Xuzhou Survey and Design Center, State Grid Economic and Technological Research Institute Co., Ltd., Xuzhou 221005, China
关键词:
摇摆桁架 屈曲约束支撑 拟动力试验 拟静力试验 抗震性能
Keywords:
rocking truss buckling-restrained brace pseudo-dynamic test pseudo-static test seismic performance
分类号:
TU352.1
DOI:
10.3969/j.issn.1001-0505.2018.02.018
摘要:
针对底部带屈曲约束支撑(BRB)的摇摆桁架(HTBB)结构进行了拟动力试验和拟静力试验.采用El Centro波对试验结构进行了小震、中震和大震的拟动力加载,拟静力加载采用位移控制.拟动力试验结果表明,结构在小震、中震和大震阶段均有效地控制了结构的变形分布,层间变形均匀.BRB屈服后,结构损伤仅在BRB中发生,整体结构滞回曲线饱满、稳定,表现出优异的抗震性能.BRB的屈服先于摇摆桁架的损伤,从而保护了主体结构.模拟分析结果与试验结果相吻合.拟静力试验在1/40的顶点位移角下,滞回曲线饱满、稳定,表明结构在连续经历小震、中震、大震的地震激励后,仍具有优异的耗能能力和抗震性能.
Abstract:
Pseudo-dynamic and pseudo-static tests were conducted on a hinged truss with buckling restrained braces(BRBs)at base(HTBB)specimen. During the pseudo-dynamic test, the peak ground motion(PGA)of El Centro ground motion record was scaled at three different levels, corresponding to frequent earthquake(FE), design based earthquake(DBE)and maximum considered earthquake(MCE). The pseudo-static test was conducted with the controlled displacement. The pseudo-dynamic test revealed that HTBB effectively controlled the deformation mode and the story drift was evenly distributed during three different seismic levels. After the yielding of BRB, only BRBs were damaged and the global hysteretic curve was full and stable, exhibiting the excellent seismic performance. BRBs yielded before the damage of the rocking truss, thus the main structure was protected from being damaged. Simulation results are in agreement with test results. During the quasi-static test, the hysteretic curve is full and stable even at the loading displacement of 1/40 roof drift ratio, demonstrating the excellent energy dissipation capacity and seismic performance of HTBB after suffering continuous earthquakes of FE, DBE and MCE intensities.

参考文献/References:

[1] Alavi B, Krawinkler H. Strengthening of moment-resisting frame structures against near-fault ground motion effects [J]. Earthquake Engineering and Structural Dynamics, 2004, 33(6): 707-722. DOI:10.1002/eqe.370.
[2] 曲哲.摇摆墙-框架结构抗震损伤机制控制及设计方法研究[D].北京:清华大学土木水利学院,2010.
[3] Djojo G S, Clifton G C, Henry R S, et al. Experimental testing of a double acting ring spring system for use in rocking steel shear walls [C]//8th International Conference on Behavior of Steel Structures in Seismic Areas. Shanghai, China, 2015: 1245-1252.
[4] Takeuchi T, Suzuki K. Performance-based design for truss-frame structures using energy dissipation devices [C]//Proceedings of the 4th International Conference on Behaviour of Steel Structures in Seismic Area. Naples, Italy, 2003: 55-61.
[5] Takeuchi T, Chen X, Matsui R. Seismic performance of controlled spine frames with energy-dissipating members [J]. Journal of Constructional Steel Research, 2015, 114: 51-65. DOI:10.1016/j.jcsr.2015.07.002.
[6] 杜永峰,武大洋.基于刚度需求设计的轻型消能摇摆架减震性态分析[J].土木工程学报,2014,47(1):24-35. DOI:10.15951/j.tmgcxb.2014.01.006
Du Yongfeng, Wu Dayang. Performance analysis of light energy dissipative rocking frame designed on the basis of stiffness demand [J]. China Civil Engineering Journal, 2014, 47(1): 24-35. DOI:10.15951/j.tmgcxb.2014.01.006. (in Chinese)
[7] 武大洋.近场地震作用下轻型自复位消能摇摆钢架减震性能分析[D].兰州:兰州理工大学土木工程学院,2013.
[8] 吕西林,陈云,毛苑君.结构抗震设计的新概念——可恢复功能结构 [J].同济大学学报(自然科学版),2011,39(7): 941-947.
  Lü Xilin, Chen Yun, Mao Yuanjun. New concept of structural seismic design: Earthquake resilient structures [J]. Journal of Tongji University(Natural Science), 2011, 39(7): 941-947.(in Chinese)
[9] 全国信息与文献工作标准化技术委员会出版物格式分委员.GB 50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
[10] MacRae G A, Kimura Y, Roeder C. Effect of column stiffness on braced frame seismic behavior [J]. Journal of Structural Engineering, 2004, 130(3): 381-391. DOI:10.1061/(asce)0733-9445(2004)130:3(381).
[11] Black C J, Makris N, Aiken I D. Component testing, seismic evaluation and characterization of buckling-restrained braces [J]. Journal of Structural Engineering, 2004, 130(6): 880-894. DOI:10.1061/(asce)0733-9445(2004)130:6(880).

备注/Memo

备注/Memo:
收稿日期: 2017-09-17.
作者简介: 杨晓燕(1990—),女,博士生;吴京(联系人),男,博士,教授,博士生导师, seuwj@seu.edu.cn.
基金项目: 国家重点研发计划专项资助项目(2016YFC0701400)、国家自然科学基金资助项目(51528802)、中央高校基本科研业务费专项资金和江苏省普通高校研究生科研创新计划资助项目(3205007720)、东南大学混凝土及预应力混凝土结构教育部重点实验室开放课题资助项目(CPCSME2016-09).
引用本文: 杨晓燕,冯玉龙,吴京,等.底部带屈曲约束支撑的摇摆桁架抗震性能试验研究[J].东南大学学报(自然科学版),2018,48(2):303-309. DOI:10.3969/j.issn.1001-0505.2018.02.018.
更新日期/Last Update: 2018-03-20