[1]王浩,柯世堂.基于风洞试验的四塔布置超大型冷却塔风致综合受力与稳定性能[J].东南大学学报(自然科学版),2018,48(2):330-336.[doi:10.3969/j.issn.1001-0505.2018.02.022]
 Wang Hao,Ke Shitang.Comprehensive performance of stress and stability of super large cooling tower under four-tower combination based on wind tunnel tests[J].Journal of Southeast University (Natural Science Edition),2018,48(2):330-336.[doi:10.3969/j.issn.1001-0505.2018.02.022]
点击复制

基于风洞试验的四塔布置超大型冷却塔风致综合受力与稳定性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第2期
页码:
330-336
栏目:
建筑学
出版日期:
2018-03-20

文章信息/Info

Title:
Comprehensive performance of stress and stability of super large cooling tower under four-tower combination based on wind tunnel tests
作者:
王浩柯世堂
南京航空航天大学土木工程系, 南京 210016; 南京航空航天大学江苏省风力机设计高技术研究重点实验室, 南京 210016
Author(s):
Wang Hao Ke Shitang
Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
四塔组合 超大型冷却塔 风洞试验 风致响应 稳定性能
Keywords:
four-tower combination super large cooling tower wind tunnel test wind-induced response stability performance
分类号:
TU279.741
DOI:
10.3969/j.issn.1001-0505.2018.02.022
摘要:
以串列、矩形、菱形、L形和斜L形5种四塔组合方案为例,基于刚体测压风洞试验获得了不同四塔布置形式下冷却塔群表面风荷载分布模式.建立了塔筒-支柱-环基的一体化有限元模型,探讨了不同来流风向角下四塔布置形式和相对位置对风致响应的影响规律.验算了塔筒局部稳定性和整体屈曲稳定性,对比分析了四塔塔群的极限承载能力.结果表明:四塔布置形式对冷却塔位移响应、筒体环向弯矩和支柱扭矩影响较大,基于响应的四塔布置形式优选方案中串列布置形式性能最优,菱形、斜L形、矩形和L形次之;串列和斜L形布置形式在稳定性能方面较其余四塔布置形式更优,而L形、菱形和矩形布置形式的临界风速分别为串列布置形式的65%,70%和60%.
Abstract:
Taking the single row, rectangular, rhombic, L-shaped, and oblique L-shaped four-tower combinations as examples, the wind load distribution models were obtained based on wind tunnel tests for rigid bodies with different four-tower combinations. A finite element model for a tower shell-herringbone column-circular foundation-pile integration tower system was established. The influence rules of different four-tower combinations and relative positions on the wind-induced response were discussed. The local stability and the overall buckling stability of the cooling tower were checked, and the ultimate load-carrying capacity of the four-tower combinations was compared and analyzed. The results show that the form of the four-tower combination has great influence on the displacement, the circumferential moment of the tower shell and the torque of the column. From the perspective of the wind-induced responses, arranging the four towers in a row is the best choice for the form selection of the four-tower combination, successively followed by the combinations in oblique L-shape, rectangular, L-shape and rhombic. The row and the oblique L-shaped combinations exhibit obvious advantages in stability performance compared with other combinations. The critical wind speeds of the L-shape, rhombic and rectangular layout schemes are 65%, 70% and 60% of the critical wind speed of the row layout scheme, respectively.

参考文献/References:

[1] Swartz S E, Chien C C, Hu K K, et al. Tests on microconcrete model of hyperbolic cooling tower[J]. Experimental Mechanics, 1985, 25(1): 12-23. DOI:10.1007/bf02329121.
[2] 中华人民共和国住房和城乡建设部. GB/T 50102—2014 工业循环水冷却设计规范[S]. 北京: 中国计划出版社, 2014.
[3] Niemann H J, Kopper H D. Influence of adjacent buildings on wind effects on cooling towers[J]. Engineering Structures, 1998, 20(10):874-880.
[4] 柯世堂, 王浩, 余玮. 典型四塔组合特大型冷却塔群风荷载干扰效应[J]. 同济大学学报(自然科学版), 2017, 45(10):1421-1428.DOI:10.11908/j.issn.0253-374x.2017.10.002.
Ke Shitang, Wang Hao, Yu Wei. Research on interference effect of wind loads for super-large cooling tower under typical four towers combinations[J]. Journal of Tongji University(Natural Science), 2017, 45(10):1421-1428.DOI:10.11908/j.issn.0253-374x.2017.10.002. (in Chinese)
[5] 张军锋, 葛耀君, 赵林. 群塔布置对冷却塔整体风荷载和风致响应的不同干扰效应[J]. 工程力学, 2016, 33(8):15-23,44.DOI:10.6052/j.issn.1000-4750.2015.03.0226.
Zhang Junfeng, Ge Yaojun, Zhao Lin. Interference effects on global wind loads and wind induced responses for group hyperboloidal cooling towers[J]. Engineering Mechanics, 2016, 33(8):15-23,44.DOI:10.6052/j.issn.1000-4750.2015.03.0226. (in Chinese)
[6] Bamu P C, Zingoni A. Damage, deterioration and the long-term structural performance of cooling-tower shells: A survey of developments over the past 50 years[J]. Engineering Structures, 2005, 27(12): 1794-1800. DOI:10.1016/j.engstruct.2005.04.020.
[7] Noh H C. Nonlinear behavior and ultimate load bearing capacity of reinforced concrete natural draught cooling tower shell[J]. Engineering Structures, 2006, 28(3): 399-410. DOI:10.1016/j.engstruct.2005.08.016.
[8] Noorzaei J, Naghshineh A, Abdul Kadir M R, et al. Nonlinear interactive analysis of cooling tower-foundation-soil interaction under unsymmetrical wind load[J]. Thin-Walled Structures, 2006, 44(9): 997-1005. DOI:10.1016/j.tws.2006.08.019.
[9] 中华人民共和国住房和城乡建设部. GB 50009—2012建筑结构荷载规范[S]. 北京: 中国建筑工业出版社,2012.
[10] 中华人民共和国住房和城乡建设部. JSJ/T 338—2014.建筑工程风洞试验方法标准[S]. 北京: 中国建筑工业出版社, 2014.
[11] 王浩, 柯世堂. 考虑山顶地形三维效应某电视塔测力风洞试验[J]. 中南大学学报(自然科学版), 2017,48(11):2998-3005.DOI:10.11817/j.issn.1672-7207.2017.11.021.
Wang Hao, Ke Shitang. Wind tunnel force balance test of a TV tower structure considering three-dimensional effects of mountain topographic[J]. Journal of Central South University(Science and Technology), 2017, 48(11):2998-3005.DOI:10.11817/j.issn.1672-7207.2017.11.021. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2017-09-28.
作者简介: 王浩(1992—),男,博士生;柯世堂(联系人),男,博士,副教授,keshitang@163.com.
基金项目: 国家自然科学基金资助项目(51761165022,U1733129)、江苏省自然科学基金优秀青年基金资助项目(BK20160083)、江苏省“六大人才高峰”高层次人才资助项目(JZ-026)、江苏省“青蓝工程”优秀青年骨干教师培养计划资助项目.
引用本文: 王浩,柯世堂.基于风洞试验的四塔布置超大型冷却塔风致综合受力与稳定性能[J].东南大学学报(自然科学版),2018,48(2):330-336. DOI:10.3969/j.issn.1001-0505.2018.02.022.
更新日期/Last Update: 2018-03-20