[1]熊文,刘华,郭建,等.南京长江大桥桥面体系改造方法与力学行为分析[J].东南大学学报(自然科学版),2018,48(2):350-356.[doi:10.3969/j.issn.1001-0505.2018.02.025]
 Xiong Wen,Liu Hua,Guo Jian,et al.Bridge deck system reconstruction and mechanical behavior analysis of Nanjing Yangtze River Bridge[J].Journal of Southeast University (Natural Science Edition),2018,48(2):350-356.[doi:10.3969/j.issn.1001-0505.2018.02.025]
点击复制

南京长江大桥桥面体系改造方法与力学行为分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第2期
页码:
350-356
栏目:
交通运输工程
出版日期:
2018-03-20

文章信息/Info

Title:
Bridge deck system reconstruction and mechanical behavior analysis of Nanjing Yangtze River Bridge
作者:
熊文1刘华2郭建3武嘉斌1叶见曙1
1东南大学交通学院, 南京 210096; 2中铁大桥勘测设计院集团有限公司, 武汉 430056; 3南京市公共工程建设中心, 南京 210019
Author(s):
Xiong Wen1 Liu Hua2 Guo Jian3 Wu Jiabin1 Ye Jianshu1
1School of Transportation, Southeast University, Nanjing 210096, China
2China Railway Major Bridge Reconnaissance and Design Institute Co., Ltd., Wuhan 430056, China
3Nanjing Construction Center of Public Works, Nanjing 210019, China
关键词:
南京长江大桥 桥面体系改造 正交异性钢桥面 改造施工方案 力学行为 仿真分析
Keywords:
Nanjing Yangtze River Bridge bridge deck system reconstruction steel orthotropic bridge deck reconstruction plan mechanical behaviors simulation analysis
分类号:
U445.7
DOI:
10.3969/j.issn.1001-0505.2018.02.025
摘要:
在铁路列车正常通行的前提下,基于已有病害提出了基于正交异性钢桥面板的南京长江大桥上层公路桥面体系改造方法.利用有限元数值模型,模拟南京长江大桥改造施工全过程,并基于静载试验数据进行模型验证.首先,分析原桥面系全拆除这一最不利施工状态下的静、动力特性.然后,对比改造前混凝土桥面板与改造后正交异性钢桥面系在恒载以及列车荷载作用下的受力行为,包括主桁架变形、关键构件轴力以及支座反力.最后,分析改造后正交异性钢桥面系的空间受力特征.结果表明,更换原公路混凝土桥面板,采用正交异性钢桥面板整体替换,从根本上改造了南京长江大桥的桥面体系,且无需中断铁路列车的正常营运,不仅消除了原桥面既有病害,还能减轻自重、改善关键构件受力,提高了桥面系整体性、构件连接性、结构稳定性以及整体刚度,充分发挥了正交异性钢桥面系轻质高强的特点.
Abstract:
A reconstruction method for the top highway concrete deck system of the Nanjing Yangtze River Bridge was proposed based on the existing damages by using the steel orthotropic deck without stopping the train traffic. A finite element model was established to simulate the entire reconstruction stages. The accuracy of modeling was verified by the static loading test. First, the static and dynamic characteristics of the worst structural condition after removing the old concrete deck were investigated. Then, the mechanical behaviors of the concrete deck before reconstruction and the steel orthotropic deck after reconstruction, including the deformations of the main truss, the axial forces of the key components, and the reaction forces of bearings, were compared under the dead load and the train load. Finally, the spatial stress distribution of the steel orthotropic deck after reconstruction was analyzed. The results show that the bridge deck system of the Nanjing Yangtze River Bridge is fundamentally changed from the old concrete deck to the steel orthotropic deck without stopping the train traffic. This reconstruction not only eliminates the existing damages of old deck, but also reduces the self-weight and improve the loading of the key components. The integration of the bridge deck, the connection of the components, the structural stability, and whole stiffness are improved. The low density and the high strength of the steel orthotropic deck are fully developed.

参考文献/References:

[1] 向俊, 周智辉, 曾庆元. 南京长江大桥128 m钢桁梁上列车走行安全性分析[J]. 铁道科学与工程学报, 2006, 3(2): 26-29.
  Xiang Jun, Zhou Zhihui, Zeng Qingyuan. Safety analysis of train running on the 128 m simple-supported steel truss girder of Nanjing Yangtze River Bridge[J]. Journal of Railway Science and Engineering, 2006, 3(2): 26-29.(in Chinese)
[2] 郁新新. 南京长江大桥研究[D]. 南京: 南京大学建筑与城市规划学院, 2014.
[3] Huang F L, He X H, Chen Z Q, et al. Structural safety monitoring for Nanjing Yangtze River Bridge[J]. Journal of Central South University of Technology(English Edition), 2004, 11(3): 332-335.DOI:10.1007/s11771-004-0068-4.
[4] Zhou H, Guo G, Wu B. Nanjing Yangtze River Bridge transit capacity based on queuing theory[C]//13th COTA International Conference of Transportation Professionals. Shenzhen, China, 2013, 96: 2546-2552. DOI:10.1016/j.sbspro.2013.08.285.
[5] 王剑. 基于ANSYS的桥梁施工扣件式支架系统计算分析研究[D]. 长沙: 中南大学土木工程学院, 2012.
[6] 高立强, 施洲, 韩冰. 设置纵肋小隔板对正交异性钢桥面板疲劳性能的影响研究[J]. 铁道标准设计, 2013, 33(3): 66-70.
  Gao Liqiang, Shi Zhou, Han Bing. Influence study of using longitudinal rib bulkhead upon fatigue performance of orthotropic steel bridge deck[J]. Railway Standard Design, 2013, 33(3): 66-70.(in Chinese)
[7] 王兴奎. MIDAS与ANSYS在桥梁检测中的应用实例[M]. 北京:人民交通出版社, 2015: 10-35.
[8] 王新敏. ANSYS工程结构数值分析[M]. 北京: 人民交通出版社, 2007: 30-65.
[9] 中华人民共和国铁道部. TB 10002.2—2005 铁路桥梁钢结构设计规范[S]. 北京:中国铁道出版社, 2005.
[10] 中华人民共和国交通运输部. JTG D60—2015 公路桥涵设计通用规范[S]. 北京: 人民交通出版社股份有限公司, 2015.
[11] 中华人民共和国交通运输部. JTG D64—2015 公路钢结构桥梁设计规范[S]. 北京: 人民交通出版社股份有限公司, 2015.
[12] Xiong W, Cai C S, Ye J, et al. Analytical solution on highway U-shape bridges using isotropic plate theory[J]. KSCE Journal of Civil Engineering, 2015, 19(6): 1852-1864. DOI:10.1007/s12205-015-0610-y.

备注/Memo

备注/Memo:
收稿日期: 2017-09-13.
作者简介: 熊文(1982—),男,博士,副教授,wxiong@seu.edu.cn.
基金项目: 中央高校基本科研业务费专项资金资助项目(2242016R30023)、江苏省自然科学基金资助项目(BK20161417).
引用本文: 熊文,刘华,郭建,等.南京长江大桥桥面体系改造方法与力学行为分析[J].东南大学学报(自然科学版),2018,48(2):350-356. DOI:10.3969/j.issn.1001-0505.2018.02.025.
更新日期/Last Update: 2018-03-20