参考文献/References:
[1] Stanton T E. Expansion of concrete through reaction between cement and aggregate [M]//The Alkali-Silica Reaction in Concrete. New York: Van Nostrand Reinhold, 1992: 17-19.
[2] Swamy R N. The alkali-silica reaction in concrete [M]. New York: Van Nostrand Reinhold, 1992: 1-3.
[3] Saha A K, Sarker P K. Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars [J]. Construction and Building Materials, 2016, 123: 135-142. DOI:10.1016/j.conbuildmat.2016.06.144.
[4] Kandasamy S, Shehata M H. The capacity of ternary blends containing slag and high-calcium fly ash to mitigate alkali silica reaction [J]. Cement & Concrete Composites, 2014, 49: 92-99. DOI:10.1016/j.cemconcomp.2013.12.008.
[5] Esteves T C, Rajamma R, Soares D, et al. Use of biomass fly ash for mitigation of alkali-silica reaction of cement mortars [J]. Construction and Building Materials, 2012, 26(1): 687-693. DOI:10.1016/j.conbuildmat.2011.06.075.
[6] Kim T, Olek J. The effects of lithium ions on chemical sequence of alkali-silica reaction [J]. Cement and Concrete Research, 2016, 79: 159-168. DOI:10.1016/j.cemconres.2015.09.013.
[7] Leemann A, Bernard L, Alahrache S, et al. ASR prevention—Effect of aluminum and lithium ions on the reaction products [J]. Cement and Concrete Research, 2015, 76: 192-201.
[8] Leemann A, Loertscher L, Bernard L, et al. Mitigation of ASR by the use of LiNO3—Characterization of the reaction products [J]. Cement and Concrete Research, 2014, 59: 73-86. DOI:10.1016/j.cemconres.2014.02.003.
[9] Thomas M, Fournier B, Folliard K, et al. Test methods for evaluating preventive measures for controlling expansion due to alkali-silica reaction in concrete [J]. Cement and Concrete Research, 2006, 36(10): 1842-1856. DOI:10.1016/j.cemconres.2006.01.014.
[10] Latifee E R, Rangaraju P R. Miniature concrete prism test: Rapid test method for evaluating alkali-silica reactivity of aggregates [J]. Journal of Materials in Civil Engineering, 2015, 27(7): 04014215.DOI:10.1061/(asce)mt.1943-5533.0001183.
[11] ASTM. C441/C441M-11 Standard test method for effectiveness of pozzolans or ground blast-furnace slag in preventing excessive expansion of concrete due to the alkali-silica reaction [S]. West Conshohocken,USA: ASTM, 2011.
[12] ASTM. C1567-13 Standard test method for determining the potential alkali-silica reactivity of combinations of cementitious materials and aggregate(accelerated mortar-bar method)[S]. West Conshohocken,USA: ASTM, 2013.
[13] 中华人民共和国住房和城乡建设部.GB/T 50733—2011预防混凝土碱骨料反应技术规范[S].北京:中国建筑工业出版社,2011.
[14] 中华人民共和国铁道部.TB 10424—2010铁路混凝土工程施工质量验收标准[S].北京:中国铁道出版社,2010.
[15] 中国国家标准化管理委员会.GB/T 14684—2011建设用砂[S].北京:中国标准出版社,2011.
[16] ASTM. C1260-14 Standard test method for potential alkali reactivity of aggregates(mortar-bar method)[S]. West Conshohocken,USA: ASTM, 2014.
[17] Feng X, Thomas M D A, Bremner T W, et al. Studies on lithium salts to mitigate ASR-induced expansion in new concrete: A critical review [J]. Cement and Concrete Research, 2005, 35(9): 1789-1796. DOI:10.1016/j.cemconres.2004.10.013.
[18] Millard M J, Kurtis K E. Effects of lithium nitrate admixture on early-age cement hydration [J]. Cement and Concrete Research, 2008, 38(4): 500-510. DOI:10.1016/j.cemconres.2007.11.009.
[19] Bektas F, Wang K, Ceylan H. Effect of portland cement fineness on ASTM C1260 expansion [J]. Journal of Testing and Evaluation, 2008, 36(5): 1-7.
[20] Berra M, Mangialardi T, Paolini A E. Testing natural sands for alkali reactivity with the ASTM C1260 mortar-bar expansion method [J]. Journal of the Ceramic Society of Japan, 1998, 106(1231): 237-241. DOI:10.2109/jcersj.106.237.
[21] Owsiak Z. Microstructure of alkali-silica reaction products in conventional standard and accelerated testing [J]. Ceramics Silikaty, 2003, 47(3): 108-115.