[1]陈伟,赵桂红,孙清江.量子点/硅质体编码纳米载体的制备[J].东南大学学报(自然科学版),2018,48(2):368-372.[doi:10.3969/j.issn.1001-0505.2018.02.028]
 Chen Wei,Zhao Guihong,Sun Qingjiang.Fabrication of quantum-dots/cerasomes encoding nanocarriers[J].Journal of Southeast University (Natural Science Edition),2018,48(2):368-372.[doi:10.3969/j.issn.1001-0505.2018.02.028]
点击复制

量子点/硅质体编码纳米载体的制备()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第2期
页码:
368-372
栏目:
生物医学工程
出版日期:
2018-03-20

文章信息/Info

Title:
Fabrication of quantum-dots/cerasomes encoding nanocarriers
作者:
陈伟赵桂红孙清江
东南大学生物科学与医学工程学院, 南京 210096; 东南大学生物电子学国家重点实验室, 南京 210096
Author(s):
Chen Wei Zhao Guihong Sun Qingjiang
School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
关键词:
量子点 硅质体 纳米载体 荧光编码
Keywords:
quantum dots cerasome nanocarrier fluorescence encoding
分类号:
R318.08
DOI:
10.3969/j.issn.1001-0505.2018.02.028
摘要:
采用薄膜水化法制备了包覆绿色油溶量子点和红色水溶量子点的硅质体,红色量子点包覆于硅质体内腔中,绿色量子点包覆于类磷脂双层中.研究不同种类磷脂掺杂对硅质体结构的影响,采用预编码和后编码2种方式构建量子点/硅质体编码纳米载体.实验结果表明:利用硅质体包覆量子点可保持优良的光学性能,提高抗环境干扰能力,增加生物相容性;制备的掺杂25%DSPE的双色量子点/硅质体纳米荧光载体,粒径为100~150 nm,可实现其表面的生物偶联或化学修饰;采用绿色与红色荧光强度比2∶1,1∶1,1∶2的组合方式,制备分别出3种编码量子点/硅质体,为细胞内荧光成像及生物分子检测提供基础.
Abstract:
Dual-emissive quantum-dots(QDs)/cerasomes were synthesized by using the film evaporation-and-ultrasonic method. The red emissive QDs were coated in the inner cavity of cerasomes, and the green emissive QDs were coated in the lipid bilayer. The effects of different lipids on the structures of the QDs/cerasomes were studied. The QDs/cerasomes encoding nanocarriers were prepared by the precoding method and the post-coding method. The experimental results indicate that coating the QDs with cerasomes can keep good fluorescence stability, improve anti-interference capability, and increase biocompatibility. The size of the dual-emissive QDs/cerasomes with the doping percentage of distearoyl phosphoethanolamine of 25% is about 100 to 150 nm, and further bioconjugation and chemical modification can be realized. Encoding the QDs/cerasomes with three combinations of green and red fluorescence intensity at the ratios of 2∶1, 1∶1 and 1∶2 provides the foundation for intracellular fluorescence imaging and biomolecular detection.

参考文献/References:

[1] Yue X, Dai Z. Recent advances in liposomalnanohybrid cerasomes as promising drug nanocarriers[J]. Adv Colloid Interface Sci, 2014, 207: 32-42. DOI:10.1016/j.cis.2013.11.014.
[2] Katagiri K, Ariga K, Kikuchi J I. Preparation of organic-inorganic hybrid vesicle “cerasome” derived from artificial lipid with alkoxysilyl head [J]. Chemistry Letters, 1999, 28(7): 661-662.
[3] Katagiri K, Hashizume M, Ariga K, et al. Preparation and characterization of a novel organic-inorganic nanohybrid "cerasome" formed with a liposomal membrane and silicate surface[J]. Chemistry, 2007, 13(18): 5272-5281. DOI:10.1002/chem.200700175.
[4] Liang X, Gao J, Jiang L, et al.Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer[J]. ACS Nano, 2015, 9(2): 1280-1293. DOI:10.1021/nn507482w.
[5] Feng S, Ma F, Liu R, et al. Highly efficient removal of trace leveldieldrin from water resources utilizing a cerasomal strategy[J]. Journal of Materials Chemistry A, 2016, 4(26): 10263-10273. DOI:10.1039/c6ta00969g.
[6] Ma Y, Dai Z, Gao Y, et al. Liposomal architecture boosts biocompatibility ofnanohybrid cerasomes[J]. Nanotoxicology, 2011, 5(4): 622-635. DOI:10.3109/17435390.2010.546950.
[7] Grecco H E, Lidke K A, Heintzmann R, et al. Ensemble and single particle photophysical properties(two-photon excitation, anisotropy, FRET, lifetime, spectral conversion)of commercial quantum dots in solution and in live cells[J]. Microscopy Research and Technique, 2004, 65(4): 169-179. DOI:10.1002/jemt.20129.
[8] Uyeda H T, Medintz I L, Jaiswal J K, et al. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores[J]. J Am Chem Soc, 2005, 127(11): 3870-3878. DOI:10.1021/ja044031w.
[9] Chan W C, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281(5385): 2016-2018. DOI:10.1126/science.281.5385.2016.
[10] Zhou G, Li L, Xing J, et al. Redox responsive liposomalnanohybrid cerasomes for intracellular drug delivery[J]. Colloids Surf B: Biointerfaces, 2016, 148: 518-525. DOI:10.1016/j.colsurfb.2016.09.033.
[11] Bae W K, Char K,Hur H, et al. Single-step synthesis of quantum dots with chemical composition gradients [J]. Chemistry of Materials, 2008,20(2): 531-539. DOI:10.1021/cm070754d.
[12] Xie R, Kolb U, Li J, et al. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals[J]. J Am Chem Soc, 2005, 127(20): 7480-7488. DOI:10.1021/ja042939g.
[13] Wu L,Guo Q S, Liu Y Q, et al. Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn2+ using a dual-emission silica-coated quantum dots mixture[J]. Anal Chem, 2015, 87(10): 5318-5323. DOI:10.1021/acs.analchem.5b00514.
[14] Gerion D, Pinaud F, Williams S C, et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots [J]. The Journal of Physical Chemistry B, 2001,105(37): 8861-8871.DOI:10.1021/jp0105488.
[15] Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nat Mater, 2003, 2(9): 630-638. DOI:10.1038/nmat961.
[16] Wu C, Zheng J, Huang C, et al. Hybrid silica-nanocrystal-organic dye superstructures as post-encoding fluorescent probes[J].Angew Chem Int Ed Engl, 2007, 46(28): 5393-5396. DOI:10.1002/anie.200700847.

备注/Memo

备注/Memo:
收稿日期: 2017-11-15.
作者简介: 陈伟(1992—),男,硕士生;孙清江(联系人),男,博士,教授,博士生导师,sunqj@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(21775021).
引用本文: 陈伟,赵桂红,孙清江.量子点/硅质体编码纳米载体的制备[J].东南大学学报(自然科学版),2018,48(2):368-372. DOI:10.3969/j.issn.1001-0505.2018.02.028.
更新日期/Last Update: 2018-03-20