[1]周娇,沈德魁,金伟,等.供氢类添加剂与苯氧基乙苯共混热解的反应机理[J].东南大学学报(自然科学版),2018,48(3):443-448.[doi:10.3969/j.issn.1001-0505.2018.03.010]
 Zhou Jiao,Shen Dekui,Jin Wei.Co-pyrolysis mechanism of phenethyl phenyl ether with hydrogen donor reagents[J].Journal of Southeast University (Natural Science Edition),2018,48(3):443-448.[doi:10.3969/j.issn.1001-0505.2018.03.010]
点击复制

供氢类添加剂与苯氧基乙苯共混热解的反应机理()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第3期
页码:
443-448
栏目:
能源与动力工程
出版日期:
2018-05-20

文章信息/Info

Title:
Co-pyrolysis mechanism of phenethyl phenyl ether with hydrogen donor reagents
作者:
周娇沈德魁金伟䥺Symbol`@@
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Zhou Jiao Shen Dekui Jin Wei
Key Laboratory of Energy Thermal Conversation and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
PPE 热解 芳香烃 GC/MS
Keywords:
phenethyl phenyl ether pyrolysis aromatics gas chromatography/mass spectrometer
分类号:
TK6
DOI:
10.3969/j.issn.1001-0505.2018.03.010
摘要:
采用小型固定台对β-O-4型木质素模型化合物苯氧基乙苯(PPE)进行了不同反应温度下热解以及与不同供氢添加剂下共混热解的研究.利用GC/MS分析热解产物油中芳香族化合物的分布和产率,考察了反应温度和供氢添加剂对热解产物的影响.结果表明,在700 ℃时,PPE完全热解且单体芳香族产率达到34.78%.在该反应温度下PPE与供氢添加剂共混热解能明显提高单体芳香族产物的产率,其中PPE与甲醇共混热解最高产率为62.62%.不同供氢添加剂因结构的不同对产物的促进效果不同,甲醇能提高苯酚产率至17.33%,丙酮则明显促进了甲苯以及对二甲苯的生成.
Abstract:
Pyrolysis of β-O-4 type lignin model compound phenethyl phenyl ether at different reaction temperatures and co-pyrolysis of PPE(phenethyl phenyl ether)with different hydrogen donor reagents were conducted in a fixed-bed reactor. The aromatic compounds of pyrolysis products were analyzed by GC/MS(gas chromatography/mass spectrometer). The effects of reaction temperature and reaction concentration on pyrolysis product distribution were studied. The results show that PPE is completely pyrolyzed at 700 ℃ and the yield of monomeric aromatics reaches 34.78%. Yields of monomeric aromatics are significantly increased from the co-pyrolysis process of PPE with hydrogen donor reagents at 700 ℃ and the maximum of 62.62% with methanol. The promotion of aromatic products is different due to the structures of different hydrogen donor reagents. The addition of methanol can effectively increase the yield of phenol to 17.33% while the addition of acetone can promote the formation of toluene and p-xylene.

参考文献/References:

[1] 许洁,袁振宏,刘姝娜,等. 中国生物质能源发展现状、障碍与对策[J]. 太阳能学报,2012,33(S1):122-128.
  Xu Jie, Yuan Zhenhong, Liu Shuna, et al. The development status, obstacles of biomass industry in China and countermeasures[J]. Acta Energiae Solaris Sinica, 2012, 33(S1):122-128.(in Chinese)
[2] 张斌,武书彬,阴秀丽,等. 酸水解木质素的结构及热解产物分析[J]. 太阳能学报,2011,32(1):19-24.
  Zhang Bin,Wu Shubin,Yin Xiuli,et al. Structure and pyrolysis product analysis of acid hydrolysis lignin[J]. Acta Energiae Solaris Sinica, 2011, 32(1):19-24.(in Chinese)
[3] 黄金保, 伍丹, 童红, 等. β-O-4 型木质素二聚体中键离解能的理论计算[J]. 材料导报, 2013, 27(22): 108-110.
  Huang Jinbao, Wu Dan, Tong Hong, et al. Theoretical calculation of bond dissociation energies for β-O-4 linkage lignin dimer [J]. Mater Rev, 2013, 27(22): 108-110.(in Chinese)
[4] Lora J H,Glasser W G. Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials [J]. Polym Environ, 2002, 10(1/2): 39-48.
[5] Huber G W,Iborra S, Corma A. Synthesis of transportation fuels from biomass:Chemistry,catalysts,and engineering [J]. Chemical Reviews, 2006, 106(9):4044-4098.
[6] 王华静, 赵岩, 王晨, 等. 木质素二聚体模型物裂解历程的理论研究[J]. 化学学报, 2009, 67(9): 893-900. DOI:10.3321/j.issn:0567-7351.2009.09.003.
Wang Huajing, Zhan Yan, Wang Chen, et al. Theoretical study on the pyrolysis process of lignin dimer model compounds [J]. Acta Chimica Sinica, 2009, 67(9):893-900. DOI:10.3321/j.issn:0567-7351.2009.09.003. (in Chinese)
[7] Younker J M, Beste A, Buchanan A C. Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds [J]. Chem Phys Chem, 2011, 12(18): 3556-3565. DOI:10.1002/cphc.201100477.
[8] Beste A, Buchanan A C. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers [J]. Org Chem, 2009, 74(7): 2837-2841. DOI:10.1021/jo9001307.
[9] Elder T,Beste A. Density functional theory study of the concerted pyrolysis mechanism for lignin models [J]. Energ Fuel, 2014, 28(8): 5229-5235. DOI:10.1021/jo9001307.
[10] Beste A, BuchananⅢ A C. Kinetic simulation of the thermal degradation of phenethyl phenyl ether, a model compound for the β-O-4 linkage in lignin[J]. Chemical Physics Letters, 2012, 550: 19-24. DOI:10.1016/j.cplett.2012.08.040.
[11] Huang J B, He C. Pyrolysis mechanism of α-O-4 linkage lignin dimer: A theoretical study[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 655-664. DOI:10.1016/j.jaap.2015.04.012.
[12] Britt P F, BuchananⅢ A C,Cooney M J, et al.Flash vacuum pyrolysis of methoxy-substituted lignin model compounds [J]. Journal of Organic Chemistry, 2000, 65(5): 1376-1389. DOI:10.1021/jo991479k.
[13] Zhang H Y, Carlson T R, Xiao R, et al. Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor [J]. Green Chemistry, 2012, 14(1):98-110. DOI:10.1039/c1gc15619e.
[14] Benson S W. Pyrolysis of dimethyl ether [J]. The Journal of Chemical Physics, 1956, 25(1): 27-31. DOI:10.1063/1.1742841.
[15] Hoehlein G, Freeman G R. Radiation-sensitized pyrolysis of diethyl ether: Free-radical reaction rate parameters [J]. Journal of the American Chemical Society, 1970, 92(21): 6118-6125. DOI:10.1021/ja00724a004.
[16] Sato K, Hidaka Y. Shock-tube and modeling study of acetone pyrolysis and oxidation [J]. Combustion and Flame, 2000, 122(3): 291-311. DOI:10.1016/s0010-2180(00)00121-8.
[17] Shen D K, Jin W, Gu S. Enhancement of aromatic monomer production from pyrolysis of lignin-related β-O-4 contained model compound [J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 176-182. DOI:10.1016/j.jaap.2017.08.010.
[18] Choi G G, Oh S J, Lee S J, et al. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells [J]. Bioresource Technology, 2015, 178: 99-107. DOI:10.1016/j.biortech.2014.08.053.
[19] Lou R, Wu S B,Lyu G J. Quantified monophenols in the bio-oil derived from lignin fast pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2015, 111: 27-32. DOI:10.1016/j.jaap.2014.12.022.
[20] Yang H P, Yan R, Chen H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis [J]. Fuel, 2007, 86(12/13): 1781-1788. DOI:10.1016/j.fuel.2006.12.013.
[21] 赵静. 木质素快速热解催化重整制备芳香烃的研究[D]. 南京:东南大学能源与环境学院, 2016.
[22] Norton T S, Dryer F L. Toward acomprehensive mechanism for methanol pyrolysis [J]. International Journal of Chemical Kinetics, 1990, 22(3): 219-241. DOI:10.1002/kin.550220303.
[23] Aronowitz D, Naegeli D W, Glassman I. Kinetics of the pyrolysis of methanol [J]. The Journal of Physical Chemistry, 1977, 81(25):2555-2559. DOI:10.1021/j100540a037.
[24] Jin W,Shen D K, Gu S. Pyrolytic behavior of lignin-related α-O-4 contained model compound with addition of methanol [J]. Journal of Analytical and Applied Pyrolysis, 2017, 128:363-369. DOI:10.1016/j.jaap.2017.09.013.
[25] Vin N,Herbinet O, Battin-Leclerc F. Diethyl ether pyrolysis study in a jet-stirred reactor [J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 173-176. DOI:10.1016/j.jaap.2016.07.018.
[26] Mousavipour S H, Pacey P D. Initiation and abstraction reactions in the pyrolysis of acetone [J]. The Journal of Physical Chemistry, 1996, 100(9): 3573-3579. DOI:10.1021/jp9520613.
[27] Britt P F, BuchananⅢ A C, Cooney M J, et al. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds [J]. The Journal of Organic Chemistry, 2000, 65(5): 1376-1389. DOI:10.1021/jo991479k.
[28] Britt P F, BuchananⅢ A C, Malcolm E A. Thermolysis of phenethyl phenyl ether: A model for ether linkages in lignin and low rank coal [J]. The Journal of Organic Chemistry, 1995, 60(20): 6523-6536. DOI:10.1021/jo00125a044.

相似文献/References:

[1]陈晓平,顾利锋,韩晓强,等.污泥及其与煤混合物的热解特性和灰熔融特性[J].东南大学学报(自然科学版),2008,38(6):1038.[doi:10.3969/j.issn.1001-0505.2008.06.020]
 Chen Xiaoping,Gu Lifeng,Han Xiaoqiang,et al.Pyrolysis characteristics and ash fusion property of sludge and blended fuel of sludge and coal[J].Journal of Southeast University (Natural Science Edition),2008,38(3):1038.[doi:10.3969/j.issn.1001-0505.2008.06.020]
[2]庞克亮,向文国,赵长遂.天然焦的热解及动力特性[J].东南大学学报(自然科学版),2006,36(5):751.[doi:10.3969/j.issn.1001-0505.2006.05.014]
 Pang Keliang,Xiang Wenguo,Zhao Changsui.Investigation on pyrolysis and kinetics of natural coke[J].Journal of Southeast University (Natural Science Edition),2006,36(3):751.[doi:10.3969/j.issn.1001-0505.2006.05.014]
[3]朱颖,金保升,肖刚,等.不同气氛下聚乙烯低温热解气化特性分析[J].东南大学学报(自然科学版),2007,37(5):808.[doi:10.3969/j.issn.1001-0505.2007.05.014]
 Zhu Ying,Jin Baosheng,Xiao Gang,et al.Analysis on low-temperature polyethylene pyrolysis and gasification in different atmospheres[J].Journal of Southeast University (Natural Science Edition),2007,37(3):808.[doi:10.3969/j.issn.1001-0505.2007.05.014]
[4]张典宁,周晓东.氰尿酸的合成[J].东南大学学报(自然科学版),1996,26(3):47.[doi:10.3969/j.issn.1001-0505.1996.03.010]
 Zhang Dianning,Zhou Xiaodong.Synthesis of Cyanuric Acid[J].Journal of Southeast University (Natural Science Edition),1996,26(3):47.[doi:10.3969/j.issn.1001-0505.1996.03.010]
[5]段伦博,赵长遂,李英杰,等.不同热解气氛煤焦结构及燃烧反应性[J].东南大学学报(自然科学版),2009,39(5):988.[doi:10.3969/j.issn.1001-0505.2009.05.024]
 Duan Lunbo,Zhao Changsui,Li Yingjie,et al.Structure and combustion reactivity of coal char pyrolyzed in different atmospheres[J].Journal of Southeast University (Natural Science Edition),2009,39(3):988.[doi:10.3969/j.issn.1001-0505.2009.05.024]
[6]周亚运,肖军,吕潇,等.预处理生物质的热解实验研究[J].东南大学学报(自然科学版),2016,46(2):317.[doi:10.3969/j.issn.1001-0505.2016.02.015]
 Zhou Yayun,Xiao Jun,Lü Xiao,et al.Experimental study on pyrolysis of pretreated biomass[J].Journal of Southeast University (Natural Science Edition),2016,46(3):317.[doi:10.3969/j.issn.1001-0505.2016.02.015]
[7]张丽徽,黄亚继,段锋,等.添加醋酸钙镁对污泥热解过程中焦孔隙结构的影响[J].东南大学学报(自然科学版),2016,46(4):788.[doi:10.3969/j.issn.1001-0505.2016.04.019]
 Zhang Lihui,Huang Yaji,Duan Feng,et al.Effects of calcium magnesium acetate adding on pore structure of sludge pyrolysis products[J].Journal of Southeast University (Natural Science Edition),2016,46(3):788.[doi:10.3969/j.issn.1001-0505.2016.04.019]
[8]张波,仲兆平,于点,等.生物质快速热解制取液体燃料的技术经济分析[J].东南大学学报(自然科学版),2016,46(6):1227.[doi:10.3969/j.issn.1001-0505.2016.06.020]
 Zhang Bo,Zhong Zhaoping,Yu Dian,et al.Techno-economic analysis of biomass fast pyrolysis to liquid fuels[J].Journal of Southeast University (Natural Science Edition),2016,46(3):1227.[doi:10.3969/j.issn.1001-0505.2016.06.020]

备注/Memo

备注/Memo:
收稿日期: 2017-11-20.
作者简介: 周娇(1993—),女,硕士生;沈德魁(联系人),男,博士,教授,博士生导师,101011398@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51476034,51628601)、江苏省自然科学基金资助项目(BK20161423).
引用本文: 周娇,沈德魁,金伟.供氢类添加剂与苯氧基乙苯共混热解的反应机理[J].东南大学学报(自然科学版),2018,48(3):443-448. DOI:10.3969/j.issn.1001-0505.2018.03.010.
更新日期/Last Update: 2018-05-20