[1]李蕾,王辉,朱丹丹,等.传质对土壤微生物燃料电池的产电性能及阿特拉津降解的影响[J].东南大学学报(自然科学版),2018,48(3):455-462.[doi:10.3969/j.issn.1001-0505.2018.03.012]
 Li Lei,Wang Hui,Zhu Dandan,et al.Effects of mass transport on electricity generation performance of soil microbial fuel cells and Atrazine degradation[J].Journal of Southeast University (Natural Science Edition),2018,48(3):455-462.[doi:10.3969/j.issn.1001-0505.2018.03.012]
点击复制

传质对土壤微生物燃料电池的产电性能及阿特拉津降解的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第3期
页码:
455-462
栏目:
环境科学与工程
出版日期:
2018-05-20

文章信息/Info

Title:
Effects of mass transport on electricity generation performance of soil microbial fuel cells and Atrazine degradation
作者:
李蕾王辉朱丹丹李先宁
东南大学能源与环境学院, 南京 210096
Author(s):
Li Lei Wang Hui Zhu Dandan Li Xianning
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
土壤微生物燃料电池 阿特拉津 降解 传质 阴极含氧量
Keywords:
soil microbial fuel cell Atrazine degradation mass transport cathode oxygen content
分类号:
X53
DOI:
10.3969/j.issn.1001-0505.2018.03.012
摘要:
构造以阿特拉津为目标污染物的土壤微生物燃料电池,通过向土壤中添加不同的介质改变传质条件,以及构造阴极水层改变阴极含氧量来对比不同条件下土壤微生物燃料电池(MFC)的产电性能和阿特拉津的降解率.结果发现:导体介质可以促进质子和离子在土壤中的传递,增强了电极抗极化能力,添加较大粒径活性炭的土壤MFC产生的最大功率密度为0.020 8 W/m2,同时获得最小总内阻为693 Ω;阴极淹水降低了土壤电解质溶液的电导率,使得欧姆内阻增大为1 054 Ω;增强传质可以促进土壤MFC中生物电化学作用,进而影响阿特拉津的降解,其中添加导体介质的土壤MFC取得较高的降解率;阴极覆水所形成完全厌氧的阳极环境同样对阿特拉津在土壤MFC的降解具有促进作用.
Abstract:
Soil microbial fuel cell was constructed for the remediation of soil contaminated by Atrazine. By adding different soil media to affect the mass transport and constructing the water layer to affect cathode oxygen content, the removal efficiency of Atrazine and the electricity generation performance of soil microbial fuel cell under different conditions were compared. The results show that the conductive medium can promote the transfer of the proton and the ion in the soil, improving the resistance polarization ability of the electrode in the battery, and the soil MFC(microbial fuel cell)by adding the activated carbon can obtain the maximum power density(0.020 8 W/m2)and minimum resistance(693 Ω). The water layer in cathode can improve the conductivity of soil solution electrolyte and thus the ohmic resistance increase(1 054 Ω). The mass transport can promote the bio-electrochemical effects and increase the degradation of Atrazine in soil MFC, and all of the soil MFCs with conductive medium have a high degradation rate. The water layer in cathode forms the anaerobic anode environment, thus promoting the degradation of Atrazine.

参考文献/References:

[1] Lima D L D, Silva C P, Schneider R J, et al. Development of an ELISA procedure to study sorption of atrazine onto a sewage sludge-amended luvisol soil[J]. Talanta, 2011, 85(3): 1494-1499. DOI:10.1016/j.talanta.2011.06.024.
[2] Friedmann A S. Atrazine inhibition of testosterone production in rat males following peripubertal exposure[J]. Reproductive Toxicology, 2002, 16(3): 275-279. DOI:10.1016/s0890-6238(02)00019-9.
[3] Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology, 2006, 40(17):5181-5192. DOI:10.1021/es0605016.
[4] Yuan Y, Zhou S G, Zhuang L. A new approach to in situ sediment remediation based on air-cathode microbial fuel cells[J]. Journal of Soils and Sediments, 2010, 10(7): 1427-1433. DOI:10.1007/s11368-010-0276-5.
[5] Wang X, Cai Z, Zhou Q X, et al. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells[J]. Biotechnol Bioeng, 2012, 109(2): 426-433. DOI:10.1002/bit.23351.
[6] Zhang Y Y, Wang X, Li X J, et al. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil[J]. Environmental Science & Pollution Research International, 2015, 22(3): 2335-2341. DOI:10.1007/s11356-014-3539-7.
[7] Wang H, Yi S, Cao X, et al. Reductive dechlorination of hexachlorobenzene subjected to several conditions in a bioelectrochemical system[J]. Ecotoxicology & Environmental Safety, 2017, 139:172-178. DOI:10.1016/j.ecoenv.2017.01.039.
[8] 魏金枝, 冯玉杰, 刘峻峰,等. 电催化氧化降解内分泌干扰物阿特拉津[J]. 哈尔滨工业大学学报, 2010, 42(12):1887-1891.
  Wei Jinzhi, Feng Yujie, Liu Junfeng, et al. Degradation of endocrine disruptor atrazine by electrocatalytic oxidation[J]. Journal of Harbin Institute of Technology, 2010, 42(12):1887-1891.(in Chinese)
[9] An J, Kim B, Nam J, et al. Comparison in performance of sediment microbial fuel cells according to depth of embedded anode[J]. Bioresource Technology, 2013, 127(1): 138-142. DOI:10.1016/j.biortech.2012.09.095.
[10] Wang H, Yi S, Cao X, et al. Reductive dechlorination of hexachlorobenzene subjected to several conditions in a bioelectrochemical system[J]. Ecotoxicology & Environmental Safety, 2017, 139:172-178. DOI:10.1016/j.ecoenv.2017.01.039.
[11] 万芳,焦淑倩,刘琪,等.生物质活性炭纤维笼电极微生物燃料电池产电性能[J].环境工程学报,2016,10(10):5395-5399.DOI:10.12030/j.cjee.201602115.
Wan Fang, Jiao Shuqian, Liu Qi, et al. Electrochemical performance of MFC with cage-shaped cathode from the biomass-based activated carbon fiber[J]. Chinese Journal of Environmental Engineering, 2016, 10(10):5395-5399. DOI:10.12030/j.cjee.201602115. (in Chinese)
[12] Rezaei F, Richard T L, Brennan R A, et al. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems[J]. Environmental Science & Technology, 2007, 41(11): 4053-4058. DOI:10.1021/es070426e.
[13] 邓欢, 薛洪婧, 姜允斌,等. 土壤微生物产电技术及其潜在应用研究进展[J]. 环境科学, 2015, 36(10):3926-3934. DOI:10.13227/j.hjkx.2015.10.050.
Deng Huan, Xue Hongjin, Jiang Yunbing, et al. Research progress electricity and its in technology of using soil microorganisms to generate potential applications[J]. Environmental Science, 2015, 36(10):3926-3934. DOI:10.13227/j.hjkx.2015.10.050. (in Chinese)
[14] Li X J, Wang X, Zhang Y Y, et al. Salinity and conductivity amendment of soil enhanced the bioelectrochemical degradation of petroleum hydrocarbons[J]. Sci Rep, 2016, 6:32861. DOI:10.1038/srep32861.
[15] Kronenberg M, Trably E, Bernet N, et al. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse[J]. Environmental Pollution, 2017, 231(Pt 1): 509-523. DOI:10.1016/j.envpol.2017.08.048.
[16] Li X J, Wang X, Zhang Y Y, et al. Extended petroleum hydrocarbon bioremediation in saline soil using Pt-free multianodes microbial fuel cells[J]. Rsc Advances, 2014, 4(104):59803-59808.
[17] 赵亚楠, 李秀芬, 任月萍,等. 阳极添加三价铁离子对沉积型微生物燃料电池运行特性的影响[J]. 环境工程学报, 2015, 9(12):6073-6077.
   Zhao Yanan, Li Xiufen, Ren Yueping, et al. Effect of Fe(Ⅲ)added into anode region on performance of sediment microbial fuel cell. [J].Chinese Journal of Environmental Engineering, 2015, 9(12):6073-6077.(in Chinese)
[18] Domínguez-Garay A, Berná A, Ortizbernad I, et al. Silica colloid formation enhances performance of sediment microbial fuel cells in a low conductivity soil[J]. Environmental Science & Technology, 2013, 47(4):2117-2121. DOI:10.1021/es303436x.
[19] Li X, Wang X, Ren Z J, et al. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil[J]. Chemosphere, 2015, 141:62-70. DOI:10.1016/j.chemosphere.2015.06.025.
[20] Kumar A, Singh N. Atrazine and its metabolites degradation in mineral salts medium and soil using an enrichment culture[J]. Environmental Monitoring & Assessment, 2016, 188(3):142-1-142-12. DOI:10.1007/s10661-016-5144-3.
[21] 张晶, 李茹莹, 季民. 沉积物性质对沉积物微生物燃料电池产电性能的影响[J]. 环境科学学报, 2015, 35(3):797-804. DOI:10.13671/j.hjkxxb.2014.0856.
Zhang Jing, Li Ruying, Ji Ming. Influence of sediment characteristics on the power generation capability[J]. Acta Scientiae Circumstantiae, 2015, 35(3):797-804. DOI:10.13671/j.hjkxxb.2014.0856. (in Chinese)
[22] Li X J, Wang X, Wan L L, et al. Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells[J]. Journal of Chemical Technology & Biotechnology, 2015, 91(1): 267-275. DOI:10.1002/jctb.4660.
[23] 冯玉杰, 王鑫, 李贺,等. 乙酸钠为基质的微生物燃料电池产电过程[J]. 哈尔滨工业大学学报, 2007, 39(12):1890-1894. DOI:10.3321/j.issn:0367-6234.2007.12.010.
Feng Yujie, Wang Xin, Li He, et al. Research on electricity generation process in microbial fuel cell Based on sodium acetate[J]. Journal of Harbin Industry of Technology, 2007, 39(12):1890-1894. DOI:10.3321/j.issn:0367-6234.2007.12.010. (in Chinese)
[24] Logan B E, Regan J M. Electricity-producing bacterial communities in microbial fuel cells[J]. Trends in Microbiology, 2006, 14(12): 512-518. DOI:10.1016/j.tim.2006.10.003.
[25] Hong S W, Kim H J, Choi Y S, et al. Field experiments on bioelectricity production from lake sediment using microbial fuel cell technology[J]. Bulletin-Korean Chemical Society, 2008, 29(11):2189-2194.
[26] Song T S, Yan Z S, Zhao Z W, et al. Removal of organic matter in freshwater sediment by microbial fuel cells at various external resistances[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(11):1489-1493. DOI:10.1002/jctb.2454.
[27] Sajana T K, Ghangrekar M M, Mitra A. Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell[J]. Bioresour Technol, 2014, 155(155C):84-90. DOI:10.1016/j.biortech.2013.12.094.
[28] 宋天顺, 晏再生, 胡颖,等. 沉积物微生物燃料电池修复水体沉积物研究进展[J]. 现代化工, 2009, 29(11):15-19. DOI:10.3321/j.issn:0253-4320.2009.11.003.
Song Tianshun, Yan Zaisheng, Hu Yin, et al. Progress in aquatic sediment remediation by sediment microbial fuel cell[J]. Modern Chemical Industry, 2009, 29(11):15-19. DOI:10.3321/j.issn:0253-4320.2009.11.003. (in Chinese)
[29] 张千丰,王光华. 生物炭理化性质及对土壤改良效果的研究进展[J].土壤与作物,2012,1(4): 219-226.
  Zhang Qianfeng, Wang Guanghua. Research progress of physiochemical properties of biochar and its effects as soil amendments [J].Soil and Crop, 2012,1(4): 219-226.(in Chinese)
[30] Khan M J, Iqbal M T. Modelling and analysis of electro-chemical, thermal, and reactant flow dynamics for a PEM fuel cell system[J]. Fuel Cells, 2005, 5(4): 463-475.
[31] 杨芳, 李兆华, 肖本益. 微生物燃料电池内阻及其影响因素分析[J]. 微生物学通报, 2011, 38(7):1098-1105.
  Yang Fang, Li Zhaohua, Xiao Benyi. Analysis of internal resistance and its influencing factors of MFC[J]. Microbiology China, 2011, 38(7):1098-1105.(in Chinese)
[32] Hamdan H Z, Salam D A, Hari A R, et al. Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities[J]. Science of the Total Environment, 2017, 575:1453-1461. DOI: 10.1016/j.scitotenv.2016.09.232.
[33] Cao X, Song H L, Yu C Y, et al. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell[J]. Bioresource Technology, 2015, 189:87-93.
[34] Chiou C T, Kile D E. Contaminant sorption by soil and bed sediment; is there a difference?[R]. US Geological Survey Fact Sheet 087-00, 2000.
[35] Houot S, Barriuso E, Bergheaud V. Modifications to atrazine degradation pathways in a loamy soil after addition of organic amendments[J]. Soil Biology & Biochemistry, 1998, 30(14):2147-2157.

备注/Memo

备注/Memo:
收稿日期: 2017-11-09.
作者简介: 李蕾(1993—),女,硕士生;李先宁(联系人),男,博士,教授,博士生导师,lxnseu@163.com.
基金项目: 国家自然科学基金资助项目(21277024).
引用本文: 李蕾,王辉,朱丹丹,等.传质对土壤微生物燃料电池的产电性能及阿特拉津降解的影响[J].东南大学学报(自然科学版),2018,48(3):455-462. DOI:10.3969/j.issn.1001-0505.2018.03.012.
更新日期/Last Update: 2018-05-20