[1]巩位,乔宏霞,余红发,等.基于钢筋锈蚀时变模型的氯氧镁水泥钢筋混凝土初裂时间[J].东南大学学报(自然科学版),2018,48(3):519-527.[doi:10.3969/j.issn.1001-0505.2018.03.021]
 Gong Wei,Qiao Hongxia,Yu Hongfa,et al.Initial cracking time of magnesium oxychloride cement reinforced concrete based on time-varying model of reinforcement corrosion[J].Journal of Southeast University (Natural Science Edition),2018,48(3):519-527.[doi:10.3969/j.issn.1001-0505.2018.03.021]
点击复制

基于钢筋锈蚀时变模型的氯氧镁水泥钢筋混凝土初裂时间()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第3期
页码:
519-527
栏目:
材料科学与工程
出版日期:
2018-05-20

文章信息/Info

Title:
Initial cracking time of magnesium oxychloride cement reinforced concrete based on time-varying model of reinforcement corrosion
作者:
巩位1乔宏霞2余红发1麻海燕1陈广峰3
1南京航空航天大学土木工程系, 南京 210016; 2兰州理工大学甘肃省土木工程防灾减灾重点实验室, 兰州 730050; 3北京大学地球与空间科学学院, 北京 100871
Author(s):
Gong Wei1 Qiao Hongxia2 Yu Hongfa1 Ma Haiyan1 Chen Guangfeng3
1Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
3School of Earth and Space Science, Peking University, Beijing 100871, China
关键词:
氯氧镁水泥混凝土 钢筋锈蚀 腐蚀电流密度 时变模型 初裂时间
Keywords:
magnesium oxychloride cement concrete reinforcement corrosion corrosion current density time-varying model initial cracking time
分类号:
TU503
DOI:
10.3969/j.issn.1001-0505.2018.03.021
摘要:
针对氯氧镁水泥混凝土中氯离子含量较高的问题,通过电化学试验研究了氯氧镁水泥混凝土中钢筋锈蚀速率的时变模型,并结合钢筋腐蚀电流密度以及理论模型,对氯氧镁水泥混凝土中钢筋的初始锈蚀时间和混凝土开裂时间进行预测.研究结果表明:裸露钢筋(S1)锈蚀速率符合幂函数型时变模型,BNC?水性涂层钢筋(S2)、Zintek涂层钢筋(S3)、Dacromet涂层钢筋(S4)和Geomet涂层钢筋(S5)锈蚀速率均符合对数型时变模型,Magni涂层钢筋(S6)锈蚀速率符合指数型时变模型.钢筋腐蚀电流密度限值可以作为氯氧镁水泥混凝土中钢筋初始锈蚀时间计算标准.S1,S2,S4和S6开始测试时已锈蚀,S3的初始锈蚀时间为1 115 d,S5的初始锈蚀时间为2 760 d;与S1相比,S2,S3,S4,S5和S6的混凝土开裂时间分别延迟了345,2 127,192,3 745和1 877 d,验证了氯氧镁水泥混凝土中涂层钢筋应用的可行性、长期稳定性和有效性.
Abstract:
Aiming at the problem of high chloride content in magnesium oxychloride cement concrete, a time-varying model for the corrosion rate of steel in magnesium oxychloride cement concrete was studied by an electrochemical test. Combined with the corrosion current density and the theoretical model, the initial corrosion time of steel in magnesium oxychloride cement concrete and the cracking time of concrete were predicted. The results show that the corrosion rate of exposed steel(S1)is in agreement with the power function time-varying model: the corrosion rates of BNC? coated steel(S2), Zintek coated steel(S3), Dacromet coated steel(S4)and Geomet coated steel(S5)are all in line with the logarithmic time-varying model, and corrosion rate of Magni coated steel(S6)accords with exponential time-varying model. It is feasible to use the limit of the corrosion current density of steel as a standard for calculating the initial corrosion time of rebar in magnesium chloride cement concrete. S1, S2, S4 and S6 were corroded at the beginning of the test, and the initial corrosion time of S3 is 1 115 d and the initial corrosion time of S5 is 2 760 d. Compared with S1, the cracking time of S2, S3, S4, S5 and S6 is delayed by 345, 2 127, 192, 3 745 and 1 877 d, respectively. The feasibility, the long-term stability and the effectiveness of the coated steel bar in the magnesium oxychloride cement concrete are verified.

参考文献/References:

[1] 余红发.抗盐卤腐蚀的水泥混凝土的研究现状与发展方向[J].硅酸盐学报,1999,27(2):120-128.DOI:10.3321/j.issn:0454-5648.1999.02.018.
Yu Hongfa. State-of-art and development trend in the study of bittern-resisting concrete[J]. Journal of the Chinese Ceramic Society,1999, 27(2):120-128. DOI:10.3321/j.issn:0454-5648.1999.02.018. (in Chinese)
[2] Qiao Hongxia, Gong Wei, Shi Yingying, et al. Experimental study of magnesium oxychloride cement concrete[J]. Emerging Materials Research, 2016, 5(2):248-255.DOI:10.1680/jemmr.16.00012.
[3] Gong Wei, Qiao Hongxia, Wang Penghui, et al. Corrosion of steel bar in the magnesium cement concrete based on the electrochemical method[J]. Oxidation Communications, 2016, 39(2A): 2101-2113.
[4] He P P, Poon C S, Tsang D. Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement(MOC)[J]. Construction and Building Materials, 2017, 147:519-524.DOI:10.1016/j.conbuildmat.2017.04.187.
[5] Misra A K, Mathur R. Magnesium oxychloride cement concrete[J]. Bulletin of Materials Science, 2007, 30(3):239-246. DOI:10.1007/s12034-007-0043-4.
[6] Li Zongjin, Chau C K. Influence of molar ratios on properties of magnesium oxychloridecement[J]. Cement and Concrete Research, 2007, 37(6):866-870.DOI:10.1016/j.cemconres.2007.03.015.
[7] 巩位,乔宏霞,王鹏辉,等.氯氧镁水泥混凝土中钢筋的腐蚀与防护试验研究[J].土木建筑与环境工程,2017,39(2): 84-91.DOI:10.11835/j.issn.1674-4764.2017.02.011.
Gong Wei, Qiao Hongxia, Wang Penghui, et al. Experimental analysis of corrosion and protection for steel bar in magnesium oxychloride cement concrete[J]. Journal of Civil Architectural & Environmental Engineering, 2017, 39(2):84-91. DOI:10.11835/j.issn.1674-4764.2017.02.011. (in Chinese)
[8] 李成栋,余红发.A3钢在MgCl2溶液中腐蚀行为研究[J].盐湖研究,2010,18(3): 58-61.
  Li Chengdong, Yu Hongfa. Research on corrosion behavior of A3 steel in MgCl2 solution[J]. Journal of Salt Lake Research, 2010, 18(3):58-61.(in Chinese)
[9] 马建慧,徐锋,刘伟庆,等.保护层厚度对混凝土中钢筋锈蚀的影响[J].混凝土,2017(5):8-11.DOI:10.3969/j.issn.1007-0389.2009.02.030.
Ma Jianhu, Xu Feng, Liu Weiqing, et al. Influence of the thickness of concrete cover to the corrosion of the steel in the concrete[J]. Concrete, 2017(5):8-11. DOI:10.3969/j.issn.1007-0389.2009.02.030. (in Chinese)
[10] 乔宏霞,巩位,高升,等.镁水泥混凝土中钢筋的电化学腐蚀研究[J].材料科学与工艺,2016,24(1): 63-69.DOI:10.11951/j.issn.1005-0299.20160110.
Qiao Hongxia, Gong Wei, Gao Sheng, et al. Electrochemical corrosion of steel bar in the magnesium cement concrete[J]. Materials Science and Technology, 2016, 24(1): 63-69. DOI:10.11951/j.issn.1005-0299.20160110. (in Chinese)
[11] Mehta P K.Durability of concrete—fifty years of progress?[C]//2nd International Conference on the Durability.Montreal,Canada,1991:126.
[12] Montemor M F, Simoes A M P, Ferreira M G. Chloride-induced corrosion on reinforcing steel from the fundamentals to the monitoring techniques[J]. Cement & Concrete Composites, 2003, 25(4):491-502.DOI:10.1016/S0958-9465(02)00089-6.
[13] 牛荻涛.混凝土结构耐久性与寿命预测[D].北京:科学出版社,2003:7.
[14] Pour-Ali S, Dehghanian C,Kosari A. Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline-camphorsulfonate nanocomposite coating[J]. Corrosion Science, 2015, 90:239-247.DOI:10.1016/j.corsci.2014.10.015.
[15] Pokorný P, KourilM. Evaluation of the impact of corrosion of hot-dip galvanized reinforcement on bond strength with concrete—A review[J]. Construction and Building Materials, 2017, 132:271-289.DOI:10.1016/j.conbuildmat.2016.11.096.
[16] Fihri A, Bovero E, Al-Shahrani A, et al. Recent progress in superhydrophobic coatings used for steel protection: A review[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520: 378-390.DOI:10.1016/j.colsurfa.2016.12.057.
[17] 贺鸿珠,崔玉理,史美伦,等.混凝土中钢筋锈蚀的实时监测[J].建筑材料学报,2013,16(1): 50-54.DOI:10.3969/j.issn.1007-9629.2013.01.009.
He Hongzhu, Cui Yuli, Shi Meilun, et al. Real time monitoring of corrosion of rebar in concrete[J]. Journal of Building Materials, 2013, 16(1): 50-54.DOI:10.3969/j.issn.1007-9629.2013.01.009. (in Chinese)
[18] Andrade C, Alonso C. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method[J]. Materials and Structures, 2004, 37(9): 623-643.DOI:10.1007/BF02483292.
[19] Faritov A T, Rozhdestvenskii Y G, Yamshchikova S A, et al. Improvement of the linear polarization resistance method for testing steel corrosion inhibitors[J]. Russian Metallurgy(Metally), 2016, 2016(11): 1035-1041.DOI:10.1134/s0036029516110070.
[20] 许晨.混凝土结构钢筋锈蚀电化学表征与相关检/监测技术[D].杭州:浙江大学建筑工程学院,2012.
[21] 曹楚南.腐蚀电化学原理[D].北京:化学工业出版社,2008:251-252.
[22] 李超,李宏男.考虑氯离子腐蚀作用的近海桥梁结构全寿命抗震性能评价[J].振动与冲击,2014,33(11):70-77. DOI:10.13465/j.cnki.jvs.2014.11.013.
Li Chao, Li Hongnan. Life-cycle seismic performance evaluation of offshore bridge structures considering chloride ions corrosion effect[J]. Journal of Vibration and Shock, 2014, 33(11): 70-77. DOI:10.13465/j.cnki.jvs.2014.11.013. (in Chinese)
[23] 乔宏霞,巩位,陈广峰,等.基于极化曲线的镁水泥混凝土中钢筋腐蚀试验[J].华中科技大学学报(自然科学版),2016,44(1): 6-10.DOI:10.13245/j.hust.160102.
Qiao Hongxia, Gong Wei, Chen Guangfeng, et al. Experimental study on corrosion of steel bar in magnesium cement concrete based on polarization curves[J]. Journal of Huazhong University of Science and Technology(Nature Science), 2016, 44(1): 6-10. DOI:10.13245/j.hust.160102. (in Chinese)
[24] Liu T, Weyers R W. Modeling the dynamic corrosion process inchloride contaminated concrete structures[J]. Cement and Concrete Research,1998,28(3):365-379.DOI:10.1016/S0008-8846(98)00259-2.
[25] Vu K A T, Stewart M G. Structural reliability of concrete bridges including improved chloride-induced corrosion models[J]. Structural Safety, 2000, 22(4):313-333.DOI:10.1016/S0167-4730(00)00018-7.
[26] Yalçyn H, Ergun M. The prediction of corrosion rates of reinforcing steels in concrete[J]. Cement and Concrete Research,1996, 26(10):1593-1599.DOI:10.1016/0008-8846(96)00139-1.
[27] 朱志伟.氯离子侵蚀下带裂缝钢筋混凝土结构耐久性分析方法研究[D].天津:天津大学建筑工程学院,2007.
[28] Li Chun Qing. Reliability based service life prediction of corrosion affected concrete structure[J]. Journal of Structural Engineering, 2004,130(10):1570-1577.DOI:10.1061/(ASCE)0733-9445(2004)130:10(1570).
[29] Faroz S A, Pujari N N, Ghosh S.Reliability of a corroded RC beam based on Bayesian updating of the corrosion model[J]. Engineering Structures, 2016,126: 457-468.DOI:10.1016/j.engstruct.2016.08.003.
[30] Morris W, Vazquez V M. Corrosion of reinforced concrete exposed to marine environment[J]. Corrosion Reviews, 2002,20(6):469-508.DOI:10.1515/CORRREV.2002.20.6.469.
[31] 迟丽华,孙艺,王元战.钢筋混凝土结构钢筋锈蚀模型及影响因素分析[J].港工技术,2007,44(1):17-21.DOI:10.3969/j.issn.1004-9592.2007.01.007.
Chi Lihua, Sun Yi, Wang Yuanzhan. Reinforcing bar corrosion models of RC structures and effect factors[J]. Port Engineering Technology, 2007, 44(1):17-21.DOI:10.3969/j.issn.1004-9592.2007.01.007. (in Chinese)
[32] Funahashi M. Predicting corrosion-free service life of a concrete structure in a chloride environment[J]. Aci Materials Journal,1990, 87(6):581-587.
[33] Rodriguez J, Ortega L M, Casal J, et al. Corrosion of reinforcement and service life of concrete structures[C]//Proceedings of 7th International Conference on Durability of Building Materials and Components. London,1996: 117-126.
[34] Liu Y P, Weyers R E. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures[J]. ACI MaterialsJournals,1998, 95(6):675-681.
[35] 中华人民共和国住房和城乡建设部.GB 50010—2010混凝土结构设计规范[S].北京:中国建筑工业出版社,2011.
[36] 耿欧,袁迎曙,蒋建华,等.混凝土中钢筋锈蚀速率的时变模型[J].东南大学学报(自然科学版),2010,40(6): 1293-1297.DOI:10.3969/j.issn.1001-0505.2010.06.031.
Geng Ou,Yuan Yingshu, Jiang Jianhua, et al. Time-varying model of steel corrosion in concrete[J]. Journal of Southeast University(Natural Science Edition), 2010, 40(6): 1293-1297. DOI:10.3969/j.issn.1001-0505.2010.06.031. (in Chinese)

相似文献/References:

[1]徐亦冬,钱春香,孙家瑛.化学-力学耦合作用下混凝土内钢筋蚀坑的演化及分布规律[J].东南大学学报(自然科学版),2012,42(3):492.[doi:10.3969/j.issn.1001-0505.2012.03.019]
 Xu Yidong,Qian Chunxiang,Sun Jiaying.Evolution and distribution of corrosion pits in reinforcing bars under coupled chemo-mechanical attacks[J].Journal of Southeast University (Natural Science Edition),2012,42(3):492.[doi:10.3969/j.issn.1001-0505.2012.03.019]

备注/Memo

备注/Memo:
收稿日期: 2017-12-06.
作者简介: 巩位(1989—),男,博士生;余红发(联系人),男,博士,教授,博士生导师,yuhongfa@nuaa.edu.cn.
基金项目: 国家自然科学基金资助项目(21276264,51468039)、国家重点基础研究发展计划(973计划)资助项目(2015CB655102)、江苏高校优势学科建设工程(PAPD)资助项目.
引用本文: 巩位,乔宏霞,余红发,等.基于钢筋锈蚀时变模型的氯氧镁水泥钢筋混凝土初裂时间[J].东南大学学报(自然科学版),2018,48(3):519-527. DOI:10.3969/j.issn.1001-0505.2018.03.021.
更新日期/Last Update: 2018-05-20