[1]柴丽娟,郭丽萍,陈波,等.生态高延性水泥基复合材料的抗冻性能[J].东南大学学报(自然科学版),2018,48(3):543-548.[doi:10.3969/j.issn.1001-0505.2018.03.024]
 Chai Lijuan,Guo Liping,Chen Bo,et al.Anti-freezing property of ecological high ductility cementitious composites under freeze-thaw cycles[J].Journal of Southeast University (Natural Science Edition),2018,48(3):543-548.[doi:10.3969/j.issn.1001-0505.2018.03.024]
点击复制

生态高延性水泥基复合材料的抗冻性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第3期
页码:
543-548
栏目:
材料科学与工程
出版日期:
2018-05-20

文章信息/Info

Title:
Anti-freezing property of ecological high ductility cementitious composites under freeze-thaw cycles
作者:
柴丽娟1郭丽萍1陈波2徐燕慧1费春广1
1东南大学材料科学与工程学院, 南京211189; 2南京水利科学研究院水文水资源与水利工程科学国家重点实验室, 南京 210029
Author(s):
Chai Lijuan1 Guo Liping1 Chen Bo2 Xu Yanhui1 Fei Chunguang1
1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
关键词:
生态高延性水泥基复合材料 冻融循环 抗压性能 弯曲性能 孔结构 微观形貌
Keywords:
ecological high ductility cementitious composites(ECO-HDCC) freeze-thaw cycle compressive performance flexural performance pore structure microstructure
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2018.03.024
摘要:
针对寒冷地区桥面无缝连接板的受力性能,研究了生态高延性水泥基复合材料经受0~300次冻融循环后的抗压性能、弯曲性能、外观形貌、相对动弹性模量及质量损失率,并通过压汞试验分析冻融前后孔结构的变化趋势,采用电镜分析观察微观形貌.试验结果表明:经受冻融循环后,试块表面轻微脱落,质量损失率逐渐增加,而相对动弹性模量逐渐降低;随着冻融循环次数的增加,试块的抗压强度、弹性模量和弯曲强度逐渐下降,而泊松比基本无变化;冻融循环降低了纤维与基体的界面黏结性能,导致在弯曲荷载下更多纤维呈拔出状态,在0~200次冻融循环过程中,纤维的桥联作用得以充分发挥,跨中挠度增加,而在250~300次冻融循环时,纤维和基体的抗拉性能明显降低,跨中挠度减少.
Abstract:
According to load conditions of jointless bridge link slab for cold region in service, compressive and flexural performances of ecological high ductility cementitious composites(ECO-HDCC)after 0 to 300 freeze-thaw cycles were studied. In addition, the appearance, relative dynamic elastic modulus and mass lose rate were investigated. Moreover, the mercury intrusion porosimetry and the scanning electron microscope were used to analyze the pore structure and the microstructure, respectively. The results indicate that ECO-HDCC has a little surface scaling after freeze-thaw cycle, and the mass loss rate increases gradually. And the relative dynamic elastic modulus decreases with the increase of the freeze-thaw cycle. It is concluded that the compressive strength, elastic modulus and the flexural strength show a decrease trend, however, Poisson’s ratio has a little change. The bond property between PVA fiber and the matrix would be reduced after freeze-thaw cycle treatment, leading to more fibers pull out. In addition, the fiber bridging capacity can be brought into full play after 0 to 200 freeze-thaw cycles, resulting in an apparent increase for the deflection of ECO-HDCC. However, the tensile properties of fiber and matrix have a notable reduction after 250 to 300 freeze-thaw cycles, thus leading to the decrease in the deflection.

参考文献/References:

[1] Lepech M D, Li V C. Application of ECC for bridge deck link slabs [J]. Materials and Structures, 2009, 42(9): 1185-1195. DOI: 10.1617/s11527-009-9544-5.
[2] 郭丽萍, 朱春东, 范永根, 等. 桥面连接板修补用高延性水泥基复合材料的设计与应用[J]. 混凝土与水泥制品, 2016(12):36-39. DOI:10.3969/j.issn.1000-4637.2016.12.008.
Guo Liping, Zhu Chundong, Fan Yonggen, et al. Design and application of high ductility cementitious composite(HDCC)for bridge deck link slab repairing [J]. China Concrete and Cement Products, 2016(12): 36-39. DOI:10.3969/j.issn.1000-4637.2016.12.008. (in Chinese)
[3] 瘙塁ahmaran M, Özbay E, Yücel H E, et al. Frost resistance and microstructure of engineered cementitious composites: Influence of fly ash and micro poly-vinyl-alcohol fiber [J]. Cement and Concrete Composites, 2012, 34(2): 156-165. DOI: 10.1016/j.cemconcomp.2011.10.002.
[4] Nam J, Kim G, Lee B, et al. Frost resistance of polyvinyl alcohol fiber and polypropylene fiber reinforced cementitious composites under freeze thaw cycling [J]. Composites Part B Engineering, 2016, 90(242): 241-250. DOI: 10.1016/j.compositesb.2015.12.009.
[5] 瘙塁ahmaran M, Lachemi M, Li V C. Assessing the durability of engineered cementitious composites under freezing and thawing cycles [J]. Journal of ASTM International, 2009, 6(7): 1-13. DOI: 10.1520/JAI102406.
[6] Yun H D. Effect of accelerated freeze-thaw cycling on mechanical properties of hybrid PVA and PE fiber-reinforced strain-hardening cement-based composites(SHCCs)[J]. Composites Part B Engineering, 2013, 52(4): 11-20. DOI: 10.1016/j.compositesb.2013.03.021.
[7] Qian Shunzhi, Zhang Zhigang. Development of engineered cementitious composites with local ingredients [J]. Journal of Southeast University(English Edition), 2012, 28(3): 327-330. DOI: 10.3969/ j.issn.1003-7985.2012.03.013.
[8] 张丽辉. 生态型高延性水泥基复合材料制备、关键性能及机理研究 [D]. 南京:东南大学材料科学与工程学院, 2014.
[9] 中交公路规划设计院有限公司. JTG D60—2015公路桥涵设计通用规范 [S]. 北京:人民交通出版社, 2015.
[10] 中华人民共和国住房和城乡建设部. GB/T 50081—2002普通混凝土力学性能试验方法标准 [S]. 北京: 中国建筑工业出版社, 2002.
[11] 中国工程建设标准化协会. CECS 13: 2009纤维混凝土试验方法标准 [S]. 北京:中国计划出版社, 2009.
[12] 中华人民共和国住房和城乡建设部. GB/T 50082—2009普通混凝土长期性能和耐久性能试验方法标准 [S]. 北京: 中国建筑工业出版社, 2009.
[13] 郭丽萍, 张文潇, 孙伟,等. 隧道用纤维素纤维混凝土在弯拉荷载作用下的耐久性 [J]. 东南大学学报(自然科学版), 2016, 46(3): 612-618. DOI: 10.3969/ j.issn.1001-0505.2016.03.026.
Guo Liping, Zhang Wenxiao, Sun Wei, et al. Durability of cellulose fiber reinforced concrete under bending load in tunnel engineering [J]. Journal of Southeast University(Natural Science Edition), 2016, 46(3): 612-618. DOI:10.3969/ j.issn.1001-0505.2016.03.026. (in Chinese)
[14] 中华人民共和国住房和城乡建设部. GB/T 50476—2008混凝土结构耐久性设计规范 [S]. 北京: 中国建筑工业出版社, 2008.

相似文献/References:

[1]詹炳根,孙伟,沙建芳,等.冻融循环对混凝土碱硅酸反应二次损伤的影响[J].东南大学学报(自然科学版),2005,35(4):598.[doi:10.3969/j.issn.1001-0505.2005.04.022]
 Zhan Binggen,Sun Wei,Sha JianfangLi Tianyan,et al.Influence of freeze-thaw cycles on secondary deterioration of concrete caused by alkali silica reaction[J].Journal of Southeast University (Natural Science Edition),2005,35(3):598.[doi:10.3969/j.issn.1001-0505.2005.04.022]
[2]慕儒,严安,孙伟.荷载作用下高强混凝土的抗冻性[J].东南大学学报(自然科学版),1998,28(4):138.[doi:10.3969/j.issn.1001-0505.1998.04.028]
 Mu Ru,Yan An,Sun Wei.Frost Resistance of High Strength Concrete on Preloading Flexural Stress[J].Journal of Southeast University (Natural Science Edition),1998,28(3):138.[doi:10.3969/j.issn.1001-0505.1998.04.028]
[3]宦文娟,张云升,刘国建,等.冻融环境下黏土红砖的性能劣化规律与微结构演化[J].东南大学学报(自然科学版),2014,44(2):401.[doi:10.3969/j.issn.1001-0505.2014.02.031]
 Huan Wenjuan,Zhang Yunsheng,Liu Guojian,et al.Performance deterioration and microstructure evolution of clay brick submitted to freeze-thaw cycles[J].Journal of Southeast University (Natural Science Edition),2014,44(3):401.[doi:10.3969/j.issn.1001-0505.2014.02.031]
[4]郑旭,刘松玉,蔡光华,等.活性MgO碳化固化土的冻融循环特性试验研究[J].东南大学学报(自然科学版),2015,45(3):595.[doi:10.3969/j.issn.1001-0505.2015.03.032]
 Zheng Xu,Liu Songyu,Cai Guanghua,et al.Experimental study on freeze-thaw properties of carbonated reactive MgO-stabilized soils[J].Journal of Southeast University (Natural Science Edition),2015,45(3):595.[doi:10.3969/j.issn.1001-0505.2015.03.032]
[5]刘志彬,王康达,刘松玉,等.冻融循环对GCL材料中膨润土粒径分布及膨胀指数的影响[J].东南大学学报(自然科学版),2015,45(5):964.[doi:10.3969/j.issn.1001-0505.2015.05.025]
 Liu Zhibin,Wang Kangda,Liu Songyu,et al.Influence of freeze-thaw cycles on particle size distribution and swell index of bentonite in geosynthetic clay liner[J].Journal of Southeast University (Natural Science Edition),2015,45(3):964.[doi:10.3969/j.issn.1001-0505.2015.05.025]

备注/Memo

备注/Memo:
收稿日期: 2018-01-08.
作者简介: 柴丽娟(1991—),女,博士生;郭丽萍(联系人),女,博士,副教授,博士生导师,guoliping691@163.com.
基金项目: 国家重点研发计划资助项目(2016YFC0401610)、国家自然科学基金面上资助项目(51778133)、国家重点基础研究发展计划(973计划)资助项目(2015CB655102)、江苏省“六大”人才高峰计划资助项目(JZ-004).
引用本文: 柴丽娟,郭丽萍, 陈波,等.桥面无缝连接板用生态高延性水泥基复合材料的抗冻性能研究[J].东南大学学报(自然科学版),2018,48(3):543-548. DOI:10.3969/j.issn.1001-0505.2018.03.024.
更新日期/Last Update: 2018-05-20