[1]葛琪,熊峰,何涛.钢板混凝土组合墙试验和有限元分析[J].东南大学学报(自然科学版),2018,48(5):885-895.[doi:10.3969/j.issn.1001-0505.2018.05.016]
 Ge Qi,Xiong Feng,He Tao.Testing and finite element analysis on steel-plate concrete composite wall[J].Journal of Southeast University (Natural Science Edition),2018,48(5):885-895.[doi:10.3969/j.issn.1001-0505.2018.05.016]
点击复制

钢板混凝土组合墙试验和有限元分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第5期
页码:
885-895
栏目:
土木工程
出版日期:
2018-09-20

文章信息/Info

Title:
Testing and finite element analysis on steel-plate concrete composite wall
作者:
葛琪12熊峰12何涛3
1四川大学建筑与环境学院, 成都 610065; 2四川大学深地科学与工程教育部重点实验室, 成都 610065; 3保利(成都)实业有限公司, 成都 610065
Author(s):
Ge Qi12 Xiong Feng12 He Tao3
1College of Architecture and Environment, Sichuan University, Chengdu 610065, China
2Key Laboratory of Deep Underground Science and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
3Poly(Chengdu)Industrial Co., Ltd., Chengdu 610065, China
关键词:
钢板混凝土组合墙 拟静力试验 参数分析 有限元
Keywords:
steel-plate concrete composite wall pseudo-static testing parametric analysis finite element
分类号:
TU375
DOI:
10.3969/j.issn.1001-0505.2018.05.016
摘要:
设计制作了4个1/4缩尺模型的钢板混凝土组合墙试件,进行拟静力试验,通过改变墙体构造措施与含钢率来研究此类墙体的抗震性能.然后,采用ABAQUS软件建立非线性有限元分析模型,进行参数分析.试验结果表明,增加钢板厚度可明显增加组合墙体的承载力、耗能能力等.在含钢率相近的情况下,设置封板构造的组合墙体与含加劲肋的墙体具有相近的承载力,但前者的屈服荷载、延性性能及耗能能力明显更高.有限元参数分析结果表明,增加封板数量,提高了含钢率,增加了试件峰值荷载,而增设加劲肋可使试件各特征值明显提高;降低剪跨比能够提高试件的承载力,但试件延性降低,不利于抗震.钢板混凝土墙体不满足抗震性能要求时,可通过提高钢板厚度、增加加劲肋数量和采用腔体结构形式来提高墙体抗震性能.
Abstract:
Four reduced-scale steel-plate concrete(SC)walls with the similitude of 1/4 were manufactured. Pseudo-static testing was used to investigate the seismic performance of the SC walls by changing construction measurement and the steel ratio. Then, nonlinear finite element models of the four SC walls were established by ABAQUS to carry out parametric analysis. The experimental results show that the increase of the thickness of the steel plate can significantly increase the bearing capacity, the energy dissipation capacity and so on. With the similar steel ratio, the SC wall with steel diaphragms and the SC wall with stiffening ribs have the comparative bearing capacity, but the yield load, the ductility and the energy dissipation capacity of the SC wall with steel diaphragms are larger than those of the SC wall with stiffening ribs. The parametric analysis results of the finite element models show that the increase of the number of steel diaphragms increases the steel ratio and the peak load of the specimens, while the performance values of the SC wall are obviously improved with the increase of the numbers of the stiffening rib. The decrease of the shear span ratio can increase the bearing capacity of the specimens, but decrease the ductility of the specimens, which is not good for the seismic resistance of the SC walls. When the SC walls cannot meet the requirements of seismic performance, the seismic performance of the wall can be improved by increasing the thickness of the steel plate and the number of the stiffening ribs, and using the chamber structure.

参考文献/References:

[1] Baltay P, Gjelsvik A. Coefficient of friction for steel on concrete at high normal stress[J]. Journal of Materials in Civil Engineering, 1990, 2(1): 46-49. DOI:10.1061/(asce)0899-1561(1990)2:1(46).
[2] Anwar Hossain K M, Wright H D. Experimental and theoretical behaviour of composite walling under in-plane shear[J]. Journal of Constructional Steel Research, 2004, 60(1): 59-83. DOI:10.1016/j.jcsr.2003.08.004.
[3] Anwar Hossain K M, Wright H D. Finite element modelling of the shear behaviour of profiled composite walls incorporating steel-concrete interaction[J]. Structural Engineering and Mechanics, 2005, 21(6): 659-676. DOI:10.12989/sem.2005.21.6.659.
[4] Ozaki M, Akita S, Osuga H, et al. Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear[J]. Nuclear Engineering and Design, 2004, 228(1/2/3): 225-244. DOI:10.1016/j.nucengdes.2003.06.010.
[5] Ozaki M, Osuga H, Nakayama T, et al. Study on steel plate reinforced concrete panels having a opening subjected to cyclic in-plane shear [C]//SMiRT 16 Conference. Washington, DC, USA, 2001:1171.
[6] Takeuchi M, Narikawa M, Matsuo I, et al. Study on a concrete filled structure for nuclear power plants[J]. Nuclear Engineering and Design, 1998, 179(2): 209-223. DOI:10.1016/s0029-5493(97)00282-3.
[7] Ozaki M, Akita S. Study on steel plate reinforced concrete bearing wall for nuclear power plants. Part 1: Shear and bending loading tests of SC walls [C]// SMiRT 16 Conference. Washington, DC, USA, 2001:1554.
[8] Ozaki M, Akita S. Study on steel plate reinforced concrete bearing wall for nuclear power plants. Part 2: Analytical method to evaluate response of SC walls [C]//SMiRT 16 Conference. Washington, DC, USA, 2001:1555.
[9] Emori K. Compressive and shear strength of concrete filled steel box wall [J]. Steel Structures, 2002(2):29-40.
[10] Wang W, Wang Y, Lu Z. Experimental study on seismic behavior of steel plate reinforced concrete composite shear wall[J]. Engineering Structures, 2018, 160: 281-292. DOI:10.1016/j.engstruct.2018.01.050.
[11] 张有佳.核电工程钢板混凝土结构抗震性能试验与计算分析[D]. 哈尔滨:中国地震局工程力学研究所, 2014.
[12] 张有佳, 李小军, 张通, 等. 双钢板混凝土组合墙平面内抗剪性能:理论分析与数值模拟[J]. 应用基础与工程科学学报, 2017, 25(5): 945-955. DOI:10.16058/j.issn.1005-0930.2017.05.007.
Zhang Youjia, Li Xiaojun, Zhang Tong, et al.In-plane shear performance of double steel plates and filled concrete composite wall: Theoretical analysis and numerical simulation[J]. Journal of Basic Science and Engineering, 2017, 25(5): 945-955. DOI:10.16058/j.issn.1005-0930.2017.05.007. (in Chinese)
[13] 李小军, 李晓虎. 核电工程双钢板混凝土剪力墙面外受弯性能[J]. 哈尔滨工程大学学报, 2017, 38(8): 1238-1246. DOI:10.11990/jheu.201609015.
Li Xiaojun, Li Xiaohu. Out-of-plane flexural capacity of double steel plates and concrete infill composite shear walls for nuclear power engineering[J]. Journal of Harbin Engineering University, 2017, 38(8): 1238-1246. DOI:10.11990/jheu.201609015. (in Chinese)
[14] 李小军, 李晓虎. 核电工程双钢板混凝土组合剪力墙面内受弯性能研究[J]. 工程力学, 2017, 34(9): 43-53.
  Li Xiaojun, Li Xiaohu.Study on in-plane flexural behavior of double steel plates and concrete infill composite shear walls for nuclear engineering[J]. Engineering Mechanics, 2017, 34(9): 43-53.(in Chinese)
[15] 熊峰, 何涛, 周宁. 核电站双钢板混凝土剪力墙抗剪强度研究[J]. 湖南大学学报(自然科学版), 2015, 42(9): 33-41. DOI:10.3969/j.issn.1674-2974.2015.09.005.
Xiong Feng, He Tao, Zhou Ning. Study on the shear strength of double steel plate composite shear wall in nuclear plant[J]. Journal of Hunan University(Natural Sciences), 2015, 42(9): 33-41. DOI:10.3969/j.issn.1674-2974.2015.09.005. (in Chinese)
[16] Eom T S, Park H G, Lee C H, et al. Behavior of double skin composite wall subjected to in-plane cyclic loading[J]. Journal of Structural Engineering, 2009, 135(10): 1239-1249. DOI:10.1061/(asce)st.1943-541x.0000057.
[17] Clubley S K, Moy S S J, Xiao R Y. Shear strength of steel-concrete-steel composite panels. Part Ⅰ: Testing and numerical modelling[J]. Journal of Constructional Steel Research, 2003, 59(6): 781-794. DOI:10.1016/s0143-974x(02)00061-5.
[18] 聂建国, 朱力, 樊健生, 等. 钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(1): 61-69. DOI:10.14006/j.jzjgxb.2013.01.010.
Nie Jianguo, Zhu Li, Fan Jiansheng, et al.Experimental research on seismic behavior of steel plate shear walls[J]. Journal of Building Structures, 2013, 34(1): 61-69. DOI:10.14006/j.jzjgxb.2013.01.010. (in Chinese)
[19] 曹万林, 于传鹏, 董宏英, 等. 不同构造双钢板组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(S1): 186-191. DOI:10.14006/j.jzjgxb.2013.s1.028.
Cao Wanlin, Yu Chuanpeng, Dong Hongying, et al.Experimental study on seismic performance of composite shear walls with double steel plates under different constructions[J]. Journal of Building Structures, 2013, 34(S1): 186-191. DOI:10.14006/j.jzjgxb.2013.s1.028. (in Chinese)
[20] 郝婷玥, 曹万林. 双钢板混凝土组合剪力墙轴压承载力研究[J]. 工程科学学报, 2017, 39(11): 1765-1773. DOI:10.13374/j.issn2095-9389.2017.11.020.
Hao Tingyue, Cao Wanlin. Study on axial compressive bearing capacity of composite shear wall with double-skin steel plate[J]. Journal of University of Science and Technology Beijing, 2017, 39(11): 1765-1773. DOI:10.13374/j.issn2095-9389.2017.11.020. (in Chinese)
[21] 中华人民共和国住房和城乡建设部. JGJ/T 101—2015 建筑抗震试验方法规程[S].北京:中国建筑工业出版社,2015.
[22] 张劲, 王庆扬, 胡守营, 等. ABAQUS混凝土损伤塑性模型参数验证[J]. 建筑结构, 2008, 38(8): 127-130. DOI:10.19701/j.jzjg.2008.08.036.
Zhang Jin, Wang Qingyang, Hu Shouying, et al.Parameters verification of concrete damaged plastic model of ABAQUS[J]. Building Structure, 2008, 38(8): 127-130. DOI:10.19701/j.jzjg.2008.08.036. (in Chinese)
[23] 中华人民共和国住房和城乡建设部. GB 50010—2010 混凝土结构设计规范[S]. 北京:中国建筑工业出版社,2010.
[24] 曹明. ABAQUS损伤塑性模型损伤因子计算方法研究[J]. 交通标准化, 2012, 40(2): 51-54. DOI:10.3869/j.issn.1002-4786.2012.02.011.
Cao Ming. Research on damage plastic calculation method of ABAQUS concrete damaged plasticity model[J]. Communications Standardization, 2012, 40(2): 51-54. DOI:10.3869/j.issn.1002-4786.2012.02.011. (in Chinese)

相似文献/References:

[1]马宏伟,姜维山,于庆荣,等.连接钢筋传力的组合梁及连续复合螺旋箍混凝土柱节点的研究[J].东南大学学报(自然科学版),2002,32(5):741.[doi:10.3969/j.issn.1001-0505.2002.05.014]
 Ma Hongwei,Jiang Weishan,Yu Qingrong,et al.Study on a type of reinforced bar transmitting force’s joint of composite beam and continuous compound spiral hoop reinforced concrete column[J].Journal of Southeast University (Natural Science Edition),2002,32(5):741.[doi:10.3969/j.issn.1001-0505.2002.05.014]
[2]刘璐,吴斌,李伟,等.一种新型自复位防屈曲支撑的拟静力试验[J].东南大学学报(自然科学版),2012,42(3):536.[doi:10.3969/j.issn.1001-0505.2012.03.028]
 Liu Lu,Wu Bin,Li Wei,et al.Cyclic tests of novel self-centering buckling-restrained brace[J].Journal of Southeast University (Natural Science Edition),2012,42(5):536.[doi:10.3969/j.issn.1001-0505.2012.03.028]
[3]余瑞,应惠清,陈敏,等.新型装配-现浇式密柱结构体系抗震性能试验研究[J].东南大学学报(自然科学版),2013,43(1):174.[doi:10.3969/j.issn.1001-0505.2013.01.033]
 Yu Rui,Ying Huiqing,Chen Min,et al.Test study on seismic behavior of new structure with assembly-situ wall[J].Journal of Southeast University (Natural Science Edition),2013,43(5):174.[doi:10.3969/j.issn.1001-0505.2013.01.033]
[4]李秉南,戴航,张继文.高速铁路HRBF500钢筋混凝土圆端形桥墩抗震性能试验研究[J].东南大学学报(自然科学版),2014,44(4):832.[doi:10.3969/j.issn.1001-0505.2014.04.027]
 Li Bingnan,Dai Hang,Zhang Jiwen.Experimental study on seismic behavior of HRBF500 rebar reinforced round-ended high-speed railway bridge piers[J].Journal of Southeast University (Natural Science Edition),2014,44(5):832.[doi:10.3969/j.issn.1001-0505.2014.04.027]
[5]吴函恒,周天华,吕晶.钢框架-装配式混凝土抗侧力墙板结构受力性能[J].东南大学学报(自然科学版),2016,46(1):118.[doi:10.3969/j.issn.1001-0505.2016.01.020]
 Wu Hanheng,Zhou Tianhua,Lü Jing.Mechanical behavior of steel frame-fabricated concrete lateral force resisting wall structures[J].Journal of Southeast University (Natural Science Edition),2016,46(5):118.[doi:10.3969/j.issn.1001-0505.2016.01.020]
[6]杨晓燕,冯玉龙,吴京,等.底部带屈曲约束支撑的摇摆桁架抗震性能试验研究[J].东南大学学报(自然科学版),2018,48(2):303.[doi:10.3969/j.issn.1001-0505.2018.02.018]
 Yang Xiaoyan,Feng Yulong,Wu Jing,et al.Experimental study on seismic performance of hinged truss with buckling-restrained braces at base[J].Journal of Southeast University (Natural Science Edition),2018,48(5):303.[doi:10.3969/j.issn.1001-0505.2018.02.018]

备注/Memo

备注/Memo:
收稿日期: 2018-03-13.
作者简介: 葛琪(1984—),女,博士,讲师;熊峰(联系人),女,博士,教授,博士生导师, fxiong@scu.edu.cn.
基金项目: 国家科技重大专项课题资助项目(2011ZX06002-010)、国家自然科学基金青年基金资助项目(51508357).
引用本文: 葛琪,熊峰,何涛.钢板混凝土组合墙试验和有限元分析[J].东南大学学报(自然科学版),2018,48(5):885-895. DOI:10.3969/j.issn.1001-0505.2018.05.016.
更新日期/Last Update: 2018-09-20