[1]高俊启,魏路楠,鲁洪强.基于FBG的沥青混合料车辙横向应变分析[J].东南大学学报(自然科学版),2018,48(5):927-932.[doi:10.3969/j.issn.1001-0505.2018.05.021]
 Gao Junqi,Wei Lunan,Lu Hongqiang.Analysis on lateral strain of asphalt mixture rutting based on FBG[J].Journal of Southeast University (Natural Science Edition),2018,48(5):927-932.[doi:10.3969/j.issn.1001-0505.2018.05.021]
点击复制

基于FBG的沥青混合料车辙横向应变分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第5期
页码:
927-932
栏目:
交通运输工程
出版日期:
2018-09-20

文章信息/Info

Title:
Analysis on lateral strain of asphalt mixture rutting based on FBG
作者:
高俊启1魏路楠1鲁洪强2
1南京航空航天大学土木工程系, 南京 210016; 2青岛市市政工程设计研究院有限责任公司, 青岛 266101
Author(s):
Gao Junqi1 Wei Lunan1 Lu Hongqiang2
1Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2Qingdao Municipal Engineering Design Institute Co., Ltd., Qingdao 266101, China
关键词:
道路工程 车辙 沥青混合料 横向应变 FBG
Keywords:
road engineering rutting asphalt mixture transverse strain fiber Bragg grating(FBG)
分类号:
U416.217
DOI:
10.3969/j.issn.1001-0505.2018.05.021
摘要:
为了分析沥青混合料横向流动变形,设计了基于光纤光栅(FBG)技术的车辙试验,研究了沥青混合料表面轮迹外侧横向应变发展规律.结果表明,利用FBG研究沥青混合料车辙横向流动变形是可行的.随荷载作用次数的增加,试件表面各点横向应变逐渐增大,各位置横向应变的发展趋势相同,但应变变化率不同.废胶粉掺量为15%的沥青混合料车辙横向流动变形比掺量为18%和0%的沥青混合料发展更为缓慢;AC-13C废胶粉改性沥青混合料的高温抗车辙横向流动变形能力较AC-13F优越;在废胶粉和抗车辙剂的共同作用下,沥青混合料内部横向流动得到了极大缓解.横向应变发展规律可反映沥青混合料内部抵抗轮载间接传递的能力和集料在高温下的流动状态,并解释了沥青路面流动性车辙的发展规律.
Abstract:
To analyze the transverse flow deformation of asphalt mixture rutting, a rutting test based on fiber Bragg grating(FBG)technology was designed, and the development rule of the transverse strain on the surface of the asphalt mixture beside the rut was studied. The results show that using FBG to study the transverse flow deformation of asphalt mixture in rutting is feasible. With the increase of the loading cycle number, the transverse strains at the test points on the surface of the specimen increase gradually. The development trends of the transverse strain at test points are the same, but their change rates are different. The transverse flow deformation of asphalt mixture with 15% waste rubber powder is slower than those with 18% and 0% waste rubber powder. The ability of AC-13C asphalt mixture with waste rubber powder resisting to transverse flow deformation is superior to that of AC-13F mixture at high temperature. With the combined modification of the waste rubber powder and the anti-rutting agent, the internal transverse flow of the asphalt mixture is relieved to a great extent. The development rule of the lateral strain can reflect the ability of asphalt mixture to resist indirect transmission of the wheel load and the flow of aggregates at high temperature, and it can interpret the development rule of asphalt pavement flow rutting.

参考文献/References:

[1] Wang H C, Li G F. Study of factors influencing gussasphalt mixture performance[J]. Construction and Building Materials, 2015, 101:193-200. DOI:10.1016/j.conbuildmat.2015.10.082.
[2] 关永胜, 谈至明, 张志祥. 间断级配橡胶沥青混合料抗车辙性能[J]. 同济大学学报(自然科学版), 2013, 41(5):705-709. DOI:10.3969/j.issn.0253-374x.2013.05.012.
Guan Yongsheng, Tan Zhiming, Zhang Zhixiang. Rutting performance of gap graded asphalt rubber mixtures[J]. Journal of Tongji University(Natural Science), 2013, 41(5):705-709. DOI:10.3969/j.issn.0253-374x.2013.05.012. (in Chinese)
[3] 乔英娟, 闫守河, 郭忠印, 等. 基于侧向位移法的沥青层流动性车辙分析[J]. 同济大学学报(自然科学版), 2009, 37(7):909-913. DOI:10.3969/j.issn.0253-374x.2009.07.012.
Qiao Yingjuan, Yan Shouhe, Guo Zhongyin, et al. Flow rutting analysis in asphalt layers based on lateral displacement method[J]. Journal of Tongji University(Natural Science), 2009, 37(7):909-913. DOI:10.3969/j.issn.0253-374x.2009.07.012. (in Chinese)
[4] Abd-Alla E S M, Moriyoshi A, Partl M N, et al. New wheel tracking test to analyze movements of aggregates in multi-layered asphalt specimens[J]. Journal of the Japan Petroleum Institute, 2006, 49(5):274-279. DOI:10.1627/jpi.49.274.
[5] Kondo T, Moriyoshi A, Yoshida T, et al. Deformation properties of asphalt mixture on various loading conditions for wheel tracking test [J]. Journal of the Japan Petroleum Institute, 2005, 48(5):260-271.
[6] 朱云升, 郭忠印, 王景. 高温重载条件下沥青混合料的蠕变试验研究[J]. 建筑材料学报, 2008, 11(5):545-549. DOI:10.3969/j.issn.1007-9629.2008.05.008.
Zhu Yunsheng, Guo Zhongyin, Wang Jing. Creep test and research on asphalt mixture at high temperature and heavy load[J]. Journal of Building Materials, 2008, 11(5):545-549. DOI:10.3969/j.issn.1007-9629.2008.05.008. (in Chinese)
[7] Hu J, Qian Z D, Liu Y, et al. High-temperature failure in asphalt mixtures using micro-structural investigation and image analysis[J]. Construction and Building Materials, 2015, 84:136-145. DOI:10.1016/j.conbuildmat.2014.12.090.
[8] Jiang J W, Ni F J, Gao L, et al. Developing an optional multiple repeated load test to evaluate permanent deformation of asphalt mixtures based on axle load spectrum[J]. Construction and Building Materials, 2016, 122:254-263. DOI:10.1016/j.conbuildmat.2016.05.006.
[9] Tapk?n S, Çevik A, U瘙塂ar Ü. Accumulated strain prediction of polypropylene modified marshall specimens in repeated creep test using artificial neural networks[J]. Expert Systems with Applications, 2009, 36(8):11186-11197. DOI:10.1016/j.eswa.2009.02.089.
[10] 栗培龙, 张争奇, 王秉纲. 沥青混合料高温蠕变变形行为及机理[J]. 建筑材料学报, 2012, 15(3):422-426. DOI:10.3969/j.issn.1007-9629.2012.03.025.
Li Peilong, Zhang Zhengqi, Wang Binggang. High-temperature creep deformation behavior and its mechanism of asphalt mixture[J]. Journal of Building Materials, 2012, 15(3):422-426. DOI:10.3969/j.issn.1007-9629.2012.03.025. (in Chinese)
[11] 谭忆秋, 王海朋, 马韶军, 等. 基于光纤光栅传感技术的沥青路面压实监测[J]. 中国公路学报, 2014, 27(5):112-117.
  Tan Yiqiu, Wang Haipeng, Ma Shaojun, et al. Asphalt pavement compaction monitoring based on fiber grating sensing technology[J]. China Journal of Highway and Transport, 2014, 27(5):112-117.(in Chinese)
[12] 王建坤. 利用光纤光栅测量沥青路面结构应力—应变场[D]. 大连:大连理工大学交通运输学院, 2013.
[13] 董泽蛟, 李生龙, 温佳宇, 等. 基于光纤光栅测试技术的沥青路面温度场实测[J]. 交通运输工程学报, 2014, 14(2):1-6,13. DOI:10.3969/j.issn.1671-1637.2014.02.002.
Dong Zejiao, Li Shenglong, Wen Jiayu, et al. Real-time temperature field measurement of asphalt pavement based on fiber bragg grating measuring technology[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2):1-6,13. DOI:10.3969/j.issn.1671-1637.2014.02.002. (in Chinese)
[14] 潘勤学, 郑健龙, 杨博, 等. 基于光纤光栅传感技术的沥青路面行车工况下力学响应研究[J]. 土木工程学报, 2017, 50(4):125-132. DOI:10.15951/j.tmgcxb.2017.04.015.
Pan Qinxue, Zheng Jianlong, Yang Bo, et al. Mechanical response of asphalt pavement under driving conditions by fiber bragg grating optical sensing technology[J]. China Civil Engineering Journal, 2017, 50(4):125-132. DOI:10.15951/j.tmgcxb.2017.04.015. (in Chinese)
[15] 董泽蛟, 肖桂清, 龚湘兵, 等. 重载沥青路面结构组合的抗车辙性能分析[J]. 哈尔滨工业大学学报, 2014, 46(6):72-78.
  Dong Zejiao, Xiao Guiqing, Gong Xiangbing, et al. Rutting resistance analysis of structure combinations for asphalt pavement subjected to heavy loads[J]. Journal of Harbin Institute of Technology, 2014, 46(6):72-78.(in Chinese)
[16] 李红, 祝连庆, 刘锋, 等. 裸光纤光栅表贴结构应变传递分析与实验研究[J]. 仪器仪表学报, 2014, 35(8):1744-1750.
  Li Hong, Zhu Lianqing, Liu Feng, et al. Strain transfer analysis and experimental research of surface-bonded bare FBG[J]. Chinese Journal of Scientific Instrument, 2014, 35(8):1744-1750.(in Chinese)

相似文献/References:

[1]魏建军,邢姣秀,付智.行车荷载引起桥梁振动对修复混凝土性能影响[J].东南大学学报(自然科学版),2010,40(5):1057.[doi:10.3969/j.issn.1001-0505.2010.05.033]
 Wei Jianjun,Xing Jiaoxiu,Fu Zhi.Effect of traffic load induced bridge vibrations on concrete tensile properties[J].Journal of Southeast University (Natural Science Edition),2010,40(5):1057.[doi:10.3969/j.issn.1001-0505.2010.05.033]
[2]倪富健,成晟,顾兴宇,等.路面结构的动态谱元分析[J].东南大学学报(自然科学版),2010,40(3):575.[doi:10.3969/j.issn.1001-0505.2010.03.027]
 Ni Fujian,Cheng Sheng,Gu Xingyu,et al.Spectral element analysis of dynamic pavement structure response[J].Journal of Southeast University (Natural Science Edition),2010,40(5):575.[doi:10.3969/j.issn.1001-0505.2010.03.027]
[3]马涛,张道义,黄晓明.SBS改性沥青抽提回收影响因素及改进方案[J].东南大学学报(自然科学版),2008,38(5):811.[doi:10.3969/j.issn.1001-0505.2008.05.014]
 Ma Tao,Zhang Daoyi,Huang Xiaoming.Influential factors and improvement of extraction and recovery of SBS modified asphalt[J].Journal of Southeast University (Natural Science Edition),2008,38(5):811.[doi:10.3969/j.issn.1001-0505.2008.05.014]
[4]杨军,崔娟,万军,等.基于结构层贡献率的沥青路面抗车辙措施[J].东南大学学报(自然科学版),2007,37(2):350.[doi:10.3969/j.issn.1001-0505.2007.02.033]
 Yang Jun,Cui Juan,Wan Jun,et al.Strategy of improving rutting resistance based on contribution rate of different layers[J].Journal of Southeast University (Natural Science Edition),2007,37(5):350.[doi:10.3969/j.issn.1001-0505.2007.02.033]
[5]黄宝涛,廖公云,张静芳.半刚性基层沥青路面层间接触临界状态值的计算方法[J].东南大学学报(自然科学版),2007,37(4):666.[doi:10.3969/j.issn.1001-0505.2007.04.024]
 Huang Baotao,Liao Gongyun,Zhang Jingfang.Analytical method of interlayer contact fettle in semi-rigid-base bituminous pavement[J].Journal of Southeast University (Natural Science Edition),2007,37(5):666.[doi:10.3969/j.issn.1001-0505.2007.04.024]
[6]倪富健,屠伟新,黄卫.基于神经网络技术的路面性能预估模型[J].东南大学学报(自然科学版),2000,30(5):91.[doi:10.3969/j.issn.1001-0505.2000.05.021]
 Ni Fujian,Tu Weixing,Huang Wei.Pavement Performance Forecasting Model by Using Neural Network[J].Journal of Southeast University (Natural Science Edition),2000,30(5):91.[doi:10.3969/j.issn.1001-0505.2000.05.021]
[7]黄晓明,张晓冰,邓学钧.沥青路面车辙形成规律环道试验研究[J].东南大学学报(自然科学版),2000,30(5):96.[doi:10.3969/j.issn.1001-0505.2000.05.022]
 Huang Xiaoming,Zhang Xiaobing,Deng Xuejun.Asphalt Pavement Rutting Prediction of High-Grade Highway[J].Journal of Southeast University (Natural Science Edition),2000,30(5):96.[doi:10.3969/j.issn.1001-0505.2000.05.022]
[8]陈俊,黄晓明.采用离散元方法评价集料的骨架结构[J].东南大学学报(自然科学版),2012,42(4):761.[doi:10.3969/j.issn.1001-0505.2012.04.035]
 Chen Jun,Huang Xiaoming.Evaluation of aggregate skeleton structure using the discrete element method[J].Journal of Southeast University (Natural Science Edition),2012,42(5):761.[doi:10.3969/j.issn.1001-0505.2012.04.035]
[9]孙志林,黄晓明.沥青路面线性疲劳损伤特性及形变规律[J].东南大学学报(自然科学版),2012,42(3):521.[doi:10.3969/j.issn.1001-0505.2012.03.025]
 Sun Zhilin,Huang Xiaoming.Linear fatigue damage characteristics and deformation law of asphalt pavement[J].Journal of Southeast University (Natural Science Edition),2012,42(5):521.[doi:10.3969/j.issn.1001-0505.2012.03.025]
[10]王艳,倪富健,李再新.水泥稳定碎石基层温缩性能试验及预估控制[J].东南大学学报(自然科学版),2008,38(2):260.[doi:10.3969/j.issn.1001-0505.2008.02.015]
 Wang Yan,Ni Fujian,Li Zaixin.Test and estimate control on temperature shrinkage performance of cement-treated macadam[J].Journal of Southeast University (Natural Science Edition),2008,38(5):260.[doi:10.3969/j.issn.1001-0505.2008.02.015]

备注/Memo

备注/Memo:
收稿日期: 2018-03-08.
作者简介: 高俊启(1973—),男,博士,副教授,junqi_gao@nuaa.edu.cn.
基金项目: 中国博士后科学基金资助项目(2013M541666)、江苏省博士后科研资助计划资助项目(1302138C).
引用本文: 高俊启,魏路楠,鲁洪强.基于FBG的沥青混合料车辙横向应变分析[J].东南大学学报(自然科学版),2018,48(5):927-932. DOI:10.3969/j.issn.1001-0505.2018.05.021.
更新日期/Last Update: 2018-09-20