[1]孙远,李春国,黄永明,等.云接入网络中基于能效的资源分配算法设计[J].东南大学学报(自然科学版),2018,48(5):939-943.[doi:10.3969/j.issn.1001-0505.2018.05.023]
 Sun Yuan,Li Chunguo,Huang Yongming,et al.Design of energy-efficient based resource allocation algorithm in cloud radio access network[J].Journal of Southeast University (Natural Science Edition),2018,48(5):939-943.[doi:10.3969/j.issn.1001-0505.2018.05.023]
点击复制

云接入网络中基于能效的资源分配算法设计()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第5期
页码:
939-943
栏目:
信息与通信工程
出版日期:
2018-09-20

文章信息/Info

Title:
Design of energy-efficient based resource allocation algorithm in cloud radio access network
作者:
孙远李春国黄永明杨绿溪
东南大学信息科学与工程学院, 南京 210096
Author(s):
Sun Yuan Li Chunguo Huang Yongming Yang Lüxi
School of Information Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
云接入网络 能量效率 资源分配 联合优化 改进粒子群算法
Keywords:
cloud radio access network(cloud-RAN) energy efficiency resource allocation joint optimization modified particle swarm optimization
分类号:
TN92
DOI:
10.3969/j.issn.1001-0505.2018.05.023
摘要:
为了提升云接入网络中用户端能量效率,采用前程容量约束,提出了一种联合资源分配算法.在正交频分多址接入的基础上,单用户上行传输场景中采用分数规划转化非凸问题,并引入拉格朗日对偶方法设计迭代算法;多用户上行传输场景中采用改进粒子群算法解决更复杂的非凸问题,避免单用户方案直接沿用带来的低效.通过有效的算法设计,在用户发射功率与前程容量约束下,使用户上行传输功率与射频拉远端头前程容量得到联合优化,用户端能量效率实现最大化.实验结果表明,所提算法可以有效提升云接入网络中用户端能量效率,进而降低系统功耗,符合未来绿色通信的要求.
Abstract:
To improve the energy efficiency(EE)of users in cloud radio access network(cloud-RAN), a joint resource allocation algorithm is proposed with the fronthaul capacity constraint. Based on orthogonal frequency division multiple access(OFDMA), the fractional programming is utilized to transform the non-convex problem and the Lagrangian dual method is introduced to design the iterative algorithm in the single-user uplink transmission scenario. To avoid the inefficiency by using the previous method directly, a modified particle swarm optimization(M-PSO)is used to resolve the more complex non-convex problems in multi-user uplink transmission scenario. Through the effective algorithm design, under the users’ transmit power and fronthaul capacity constraints, the EE of users is maximized by jointly optimizing the users’ uplink transmit power and the fronthaul capacity at the remote radio heads(RRHs). The experimental results show that the proposed algorithms can effectively improve the EE of users in cloud-RAN, and then the entire system power consumption can be reduced, which meets the requirements of future green communication.

参考文献/References:

[1] Checko A, Christiansen H L, Yan Y, et al. Cloud RAN for mobile networks: A technology overview[J]. IEEE Communications Surveys & Tutorials, 2015, 17(1): 405-426. DOI:10.1109/comst.2014.2355255.
[2] Li C G, Li Y S,Song K, et al. Energy efficient design for multiuser downlink energy and uplink information transfer in 5G[J]. Science China Information Sciences, 2016, 59(2): 1-8. DOI:10.1007/s11432-015-5510-8.
[3] Xin Y X, Wang D M, Li J M, et al. Area spectral efficiency and area energy efficiency of massive MIMO cellular systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3243-3254. DOI:10.1109/tvt.2015.2436896.
[4] Park S H,Simeone O, Sahin O, et al. Joint decompression and decoding for cloud radio access networks[J]. IEEE Signal Processing Letters, 2013, 20(5): 503-506. DOI:10.1109/lsp.2013.2253095.
[5] Luo S X, Zhang R, Lim T J. Downlink and uplink energy minimization through user association and beamforming in C-RAN[J]. IEEE Transactions on Wireless Communications, 2015, 14(1): 494-508. DOI:10.1109/twc.2014.2352619.
[6] Dai B B, Yu W. Energy efficiency of downlink transmission strategies for cloud radio access networks[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(4): 1037-1050. DOI:10.1109/jsac.2016.2544459.
[7] Goldsmith A. Wireless communications [M]. Cambridge, UK:Cambridge University Press, 2005: 158-168.
[8] El Gamal A, Kim Y H. Network information theory [M]. Cambridge, UK:Cambridge University Press, 2011: 56-72.
[9] Kennedy J. Particle swarm optimization [M]. Springer US: Encyclopedia of Machine Learning, 2011: 760-766.
[10] Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255. DOI:10.1109/tevc.2004.826071.
[11] Liu L, Bi S Z, Zhang R. Joint power control andfronthaul rate allocation for throughput maximization in OFDMA-based cloud radio access network[J]. IEEE Transactions on Communications, 2015, 63(11): 4097-4110. DOI:10.1109/tcomm.2015.2469687.

相似文献/References:

[1]左加阔,赵力,邹采荣.时延服务质量约束下的高能效功率分配算法[J].东南大学学报(自然科学版),2015,45(4):635.[doi:10.3969/j.issn.1001-0505.2015.04.004]
 Zuo Jiakuo,Zhao Li,Zou Cairong.Energy-efficient power allocation algorithm with delay QoS constraints[J].Journal of Southeast University (Natural Science Edition),2015,45(5):635.[doi:10.3969/j.issn.1001-0505.2015.04.004]

备注/Memo

备注/Memo:
收稿日期: 2017-12-15.
作者简介: 孙远(1988—),男,博士生;杨绿溪(联系人),男,博士,教授,博士生导师,lxyang@seu.edu.cn.
基金项目: 国家高技术研究发展计划(863计划)资助项目(2015AA01A703)、国家自然科学基金资助项目(61372101, 61671144).
引用本文: 孙远,李春国,黄永明,等.云接入网络中基于能效的资源分配算法设计[J].东南大学学报(自然科学版),2018,48(5):939-943. DOI:10.3969/j.issn.1001-0505.2018.05.023.
更新日期/Last Update: 2018-09-20