[1]操礼林,曹栋,张志强,等.随机人群行走下人行桥动力特性参数及加速度响应[J].东南大学学报(自然科学版),2018,48(6):1028-1035.[doi:10.3969/j.issn.1001-0505.2018.06.007]
 Cao Lilin,Cao Dong,Zhang Zhiqiang,et al.Dynamic characteristic parameter and acceleration response of footbridge under random crowd walking[J].Journal of Southeast University (Natural Science Edition),2018,48(6):1028-1035.[doi:10.3969/j.issn.1001-0505.2018.06.007]
点击复制

随机人群行走下人行桥动力特性参数及加速度响应()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第6期
页码:
1028-1035
栏目:
土木工程
出版日期:
2018-11-20

文章信息/Info

Title:
Dynamic characteristic parameter and acceleration response of footbridge under random crowd walking
作者:
操礼林1曹栋1张志强2李爱群2 3
1江苏大学土木工程与力学学院, 镇江 212013 ; 2东南大学土木工程学院, 南京 210096 ; 3北京建筑大学土木与交通工程学院, 北京 100044
Author(s):
Cao Lilin1 Cao Dong1 Zhang Zhiqiang2 Li Aiqun2 3
1 School of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
2 School of Civil Engineering, Southeast University, Nanjing 210096, China
3 School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
关键词:
人-结构竖向相互作用 人致振动 随机人群 振动分析 人行桥
Keywords:
human-structure vertical interaction human-induced vibration random crowd vibration analysis footbridge
分类号:
TU311.3
DOI:
10.3969/j.issn.1001-0505.2018.06.007
摘要:
为考虑随机行走人群中个体间差异性和个体内随机性,提出了基于步长的随机人群行走构建方法,推导了考虑人-结构竖向相互作用的动力方程,建立了随机人群行走下人行桥振动响应分析方法,并分析了人行桥结构动力特性参数的变化规律.结果表明,考虑人-结构竖向相互作用时,人群行走会显著影响结构的阻尼比和频率.随着人流密度的提高,人行桥瞬时阻尼比明显增大,瞬时频率大幅降低.当人群密度恒定而行人分布不断拥挤时,人行桥瞬时阻尼比先增大后减小,瞬时频率先减小后增大.随着人流密度的提高,人行桥竖向峰值加速度和均方根值加速度响应均先增大后减小,人流密度为0.5人/m2时,人行桥竖向加速度响应最大.
Abstract:
In order to consider the inter-subject variability and intra-subject variability in random walking crowd, a random crowd walking construction method based on the walking step length was proposed. Considering the vertical interaction between human and structure, the dynamic equation was deduced and a vibration response analysis method of footbridge under random crowd walking was established. The variation regularity of the structural dynamic characteristic parameters of footbridge under random crowd walking was analyzed. The results show that crowd walking can significantly affect the damping ratio and the frequency of the structure when considering human-structure vertical interaction. With the increase of the pedestrian flow density, the instantaneous damping ratio of footbridge increases significantly and the instantaneous frequency decreases sharply. When the crowd density is invariable and the pedestrian distribution is constantly crowded, the instantaneous damping ratio of footbridge increases firstly and then decreases, while the instantaneous frequency decreases firstly and then increases. With the increase of the pedestrian flow density, the vertical peak acceleration and the root mean square acceleration responses of footbridge increase firstly and then decrease. When the density of pedestrian flow is 0.5 person/m2, the vertical acceleration response of footbridge is the maximum.

参考文献/References:

[1] 张琼, 南娜娜,朱前坤,等.基于行人动力学模型的人桥竖向动力相互作用[J].重庆大学学报,2017,40(4):93-100.DOI:10.11835/j.issn.1000-582X.2017.04.012.
  Zhang Qiong, Nan Nana, Zhu Qiankun, et at. Pedestrian-bridge dynamic interaction in the vertical based on biodynamic model[J]. Journal of Chongqing University, 2017, 40(4): 93-100.(in Chinese)
[2] 高世桥, 王栋, 牛少华. 人-结构耦合系统动态特性分析[J]. 北京理工大学学报, 2013, 33(3): 235-238. DOI:10.3969/j.issn.1001-0645.2013.03.004.
Gao Shiqiao, Wang Dong, Niu Shaohua. Analysis of dynamic characteristics of person-structure coupled system[J]. Transactions of Beijing Institute of Technology, 2013, 33(3): 235-238. DOI:10.3969/j.issn.1001-0645.2013.03.004. (in Chinese)
[3] 何卫, 谢伟平, 刘隆. 人-板耦合系统动力特性研究[J]. 工程力学, 2013, 30(1): 295-300.
  He Wei, Xie Weiping, Liu Long. Study on dynamic characteristics of human-floor interaction system[J]. Engineering Mechanics, 2013, 30(1): 295-300.(in Chinese)
[4] Patla A E. Understanding the roles of vision in the control of human locomotion[J]. Gait & Posture, 1997, 5(1): 54-69. DOI:10.1016/s0966-6362(96)01109-5.
[5] Venuti F, Bruno L. An interpretative model of the pedestrian fundamental relation[J]. Comptes Rendus Mécanique, 2007, 335(4): 194-200. DOI:10.1016/j.crme.2007.03.008.
[6] Venuti F, Racic V, Corbetta A. Modelling framework for dynamic interaction between multiple pedestrians and vertical vibrations of footbridges[J]. Journal of Sound & Vibration, 2016, 379: 245-263.
[7] Kasperski M. Realistic simulation of a random pedestrian flow[J]. Procedia Engineering, 2017, 199: 2814-2819. DOI:10.1016/j.proeng.2017.09.341.
[8] Archbold P, Mullarney B. Modelling the vertical loads applied by pedestrians at a range of walking velocities[J].Australian Journal of Basic and Applied Sciences, 2013,7(5): 266-277.
[9] 罗鹏. 大跨楼盖结构人群荷载模拟及振动响应分析[D]. 南京:东南大学土木学院, 2015.
[10] Kerr S C. Human induced loading on staircases[J]. Safety Science,1998, 18(4): 261-276.
[11] Figueiredo F P, da Silva J G S, de Lima L R O, et al. A parametric study of composite footbridges under pedestrian walking loads[J]. Engineering Structures, 2008, 30(3): 605-615. DOI:10.1016/j.engstruct.2007.04.021.
[12] 丁国, 陈隽. 行人荷载随机性对楼盖振动响应的影响研究[J]. 振动工程学报, 2016, 29(1): 123-131. DOI:10.16385/j.cnki.issn.1004-4523.2016.01.016.
Ding Guo, Chen Jun. Influences of walking load randomness on vibration responses of long-span floors[J]. Journal of Vibration Engineering, 2016, 29(1): 123-131. DOI:10.16385/j.cnki.issn.1004-4523.2016.01.016. (in Chinese)
[13] Bertram J E A, Ruina A. Multiple walking speed-frequency relations are predicted by constrained optimization[J]. Journal of Theoretical Biology, 2001, 209(4): 445-453. DOI:10.1006/jtbi.2001.2279.
[14] Venuti F, Bruno L. An interpretative model of the pedestrian fundamental relation[J]. Comptes Rendus Mécanique, 2007, 335(4): 194-200. DOI:10.1016/j.crme.2007.03.008.
[15] 李红利, 陈政清. 考虑荷载随机性的人行桥人致振动计算方法研究[J]. 湖南大学学报(自然科学版), 2013, 40(10): 22-31.
  Li Hongli, Chen Zhengqing. A calculation method for footbridge vibration under stochastic pedestrian loading[J]. Journal of Hunan University(Natural Sciences), 2013, 40(10): 22-31.(in Chinese)
[16] 杨予, 杨云芳, 洪震,等. 人体站姿竖向振动等效单自由度模型参数研究[J]. 振动与冲击, 2012, 31(23): 154-157. DOI:10.3969/j.issn.1000-3835.2012.23.029.
Yang Yu, Yang Yunfang, Hong Zhen, et al. Parameters of an equivlent SDOF vertical vibration model for a standing human body[J]. Journal of Vibration and Shock, 2012, 31(23): 154-157. DOI:10.3969/j.issn.1000-3835.2012.23.029. (in Chinese)
[17] Caprani C C, Keogh J, Archbold P, et al. Enhancement factors for the vertical response of footbridges subjected to stochastic crowd loading[J]. Computers & Structures, 2012, 102-103: 87-96. DOI:10.1016/j.compstruc.2012.03.006.

相似文献/References:

[1]操礼林,钱程,张志强,等.人行荷载模型与人致结构振动试验研究[J].东南大学学报(自然科学版),2018,48(1):113.[doi:10.3969/j.issn.1001-0505.2018.01.017]
 Cao Lilin,Qian Cheng,Zhang Zhiqiang,et al.Experimental investigation on human walking load model and human-induced vibration of floor structure[J].Journal of Southeast University (Natural Science Edition),2018,48(6):113.[doi:10.3969/j.issn.1001-0505.2018.01.017]

备注/Memo

备注/Memo:
收稿日期: 2018-02-06.
作者简介: 操礼林(1979—),男,博士,副教授, cll@ujs.edu.cn.
基金项目: 国家自然科学基金资助项目(51408267,51278106)、江苏省高校自然科学基金资助项目(14KJB560005).
引用本文: 操礼林,曹栋,张志强,等.随机人群行走下人行桥动力特性参数及加速度响应[J].东南大学学报(自然科学版),2018,48(6):1028-1035. DOI:10.3969/j.issn.1001-0505.2018.06.007.
更新日期/Last Update: 2018-11-20