[1]吴宜峰,李爱群,王浩,等.近断层脉冲地震作用下隔震桥梁等延性位移系数谱[J].东南大学学报(自然科学版),2018,48(6):1044-1049.[doi:10.3969/j.issn.1001-0505.2018.06.009]
 Wu Yifeng,Li Aiqun,Wang Hao,et al.Spectra of constant-ductility displacement ratio for seismic isolated bridges subjected to near-fault pulse-like earthquake[J].Journal of Southeast University (Natural Science Edition),2018,48(6):1044-1049.[doi:10.3969/j.issn.1001-0505.2018.06.009]
点击复制

近断层脉冲地震作用下隔震桥梁等延性位移系数谱()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第6期
页码:
1044-1049
栏目:
交通运输工程
出版日期:
2018-11-20

文章信息/Info

Title:
Spectra of constant-ductility displacement ratio for seismic isolated bridges subjected to near-fault pulse-like earthquake
作者:
吴宜峰12李爱群123王浩3沙奔3
1北京建筑大学土木与交通工程学院, 北京 100044; 2北京建筑大学北京未来城市设计高精尖创新中心, 北京 100044; 3东南大学土木工程学院, 南京 210096
Author(s):
Wu Yifeng12 Li Aiqun123 Wang Hao3 Sha Ben3
1School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
3School of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
近断层脉冲地震动 隔震 延性系数 屈服后刚度比 位移系数
Keywords:
near-fault pulse-like ground motion seismic isolation ductility ratio post-to-pre-yield stiffness ratio displacement ratio
分类号:
U448.215
DOI:
10.3969/j.issn.1001-0505.2018.06.009
摘要:
为了进一步深入研究近断层脉冲地震作用下隔震桥梁可能因位移过大导致破坏甚至造成落梁灾害的问题,在收集整理108条近断层脉冲波的基础上,研究了适用于隔震桥梁的等延性位移系数谱,其中延性系数取值范围是5~70.采用地震动脉冲周期对结构自振周期进行标准化,并与其他研究进行对比;研究了延性系数、屈服后刚度比等因素对位移系数谱的影响规律,并提出了指标ΩμΩα,用以定量研究上述影响.结果表明,周期标准化后,位移系数谱的变异性显著降低;引入指标ΩμΩα后可以简化位移系数谱,因简化引入的最大可能误差不超过10%.并据此建立了可供工程应用参考的简化位移系数谱.
Abstract:
The seismic isolated bridges may be badly damaged and even collapse due to excessive displacement when subjected to near-fault pulse-like ground motions. To further investigate this issue, 108 near-fault pulse-like records were first collected, and the corresponding spectra of the constant-ductility displacement ratio for the seismic isolated bridges were computed, in which the ductility μ ranged from 5 to 70. The natural period T was normalized by the pulse period Tp, and the obtained spectra were compared with those of other studies. Besides, the effects of μ and post-to-pre-yield stiffness ratio α on the constant-ductility displacement ratio Cμ were studied, and then indicators Ωμ and Ωα were introduced to quantify the above effects. Results show that the variability of Cμ is subsequently reduced by period normalizing. After introducing indicators Ωμ and Ωα, the spectra are further simplified, and the possible maximum error resulting from simplification is lower than 10%. Based on the above results, the simplified spectra of the constant-ductility displacement ratio for seismic isolated bridges were developed.

参考文献/References:

[1] 范立础, 王志强. 桥梁减隔震设计[M]. 北京: 人民交通出版社, 2001: 11-15.
[2] 茹继平, 刘加平, 曲久辉, 等. 建筑、环境与土木工程[M]. 北京: 中国建筑工业出版社, 2011: 238-242.
[3] Roussis P C, Constantinou M C, Erdik M, et al. Assessment of performance of seismic isolation system of bolu viaduct[J].Journal of Bridge Engineering, 2003, 8(4): 182-190. DOI:10.1061/(asce)1084-0702(2003)8:4(182).
[4] Han Q, Du X, Liu J B, et al. Seismic damage of highway bridges during the 2008 Wenchuan earthquake[J].Earthquake Engineering and Engineering Vibration, 2009, 8(2): 263-273. DOI:10.1007/s11803-009-8162-0.
[5] Somerville P G, Smith N F, Graves R W, et al. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J].Seismological Research Letters, 1997, 68(1): 199-222. DOI:10.1785/gssrl.68.1.199.
[6] Menun C, Fu Q. An analytical model for near-fault ground motions and the response of SDOF systems [C]//7th US National Conference on Earthquake Engineering. Boston, MA, USA, 2002: No.11.
[7] Mavroeidis G P. A mathematical representation of near-fault ground motions[J]. Bulletin of the Seismological Society of America, 2003, 93(3): 1099-1131. DOI:10.1785/0120020100.
[8] Baker J W. Quantitative classification of near-fault ground motions using wavelet analysis[J].Bulletin of the Seismological Society of America, 2007, 97(5): 1486-1501. DOI:10.1785/0120060255.
[9] Shahi S K, Baker J W. An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions[J].Bulletin of the Seismological Society of America, 2014, 104(5): 2456-2466. DOI:10.1785/0120130191.
[10] Baez J I, Miranda E. Amplification factors to estimate inelastic displacement demands for the design of structures in the near field [C]//Proceedings of the 12th World Conference on Earthquake Engineering. Oakland, New Zealand, 2000: No.1561.
[11] 张海明, 易伟建. 近场地震作用下单自由度结构强度折减系数谱[J]. 土木工程学报, 2011, 44(10): 53-59. DOI:10.15951/j.tmgcxb.2011.10.019.
Zhang Haiming, Yi Weijian. The spectrum of strength reduction factor for SDOF systems under near-field ground motions[J]. China Civil Engineering Journal, 2011, 44(10): 53-59. DOI:10.15951/j.tmgcxb.2011.10.019. (in Chinese)
[12] Gillie J L, Rodriguez-Marek A, McDaniel C. Strength reduction factors for near-fault forward-directivity ground motions[J].Engineering Structures, 2010, 32(1): 273-285. DOI:10.1016/j.engstruct. 2009.09. 014.
[13] Iervolino I, Chioccarelli E, Baltzopoulos G. Inelastic displacement ratio of near-source pulse-like ground motions[J].Earthquake Engineering & Structural Dynamics, 2012, 41(15):2351-2357. DOI:10.1002/eqe.2167.
[14] Ruiz-García J. Inelastic displacement ratios for seismic assessment of structures subjected to forward-directivity near-fault ground motions[J].Journal of Earthquake Engineering, 2011, 15(3): 449-468. DOI:10.1080/13632469.2010.498560.
[15] Durucan C, Dicleli M. AP/VP specific inelastic displacement ratio for seismic response estimation of structures[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(7): 1075-1097. DOI:10.1002/eqe.2500.
[16] Kunde M C, Jangid R S. Effects of pier and deck flexibility on the seismic response of isolated bridges[J].Journal of Bridge Engineering, 2006, 11(1): 109-121. DOI:10.1061/(asce)1084-0702(2006)11:1(109).
[17] Liu T, Zhang Q L. AP /VP specific equivalent viscous damping model for base-isolated buildings characterized by SDOF systems[J].Engineering Structures, 2016, 111: 36-47. DOI:10.1016/j.engstruct.2015.12.024.
[18] 贾俊峰, 杜修力, 韩强. 近断层地震动特征及其对工程结构影响的研究进展[J]. 建筑结构学报, 2015, 36(1): 1-12. DOI:10.14006/j.jzjgxb.2015.01.001.
Jia Junfeng, Du Xiuli, Han Qiang. A state-of-the-art review of near-fault earthquake ground motion characteristics and effects on engineering structures[J].Journal of Building Structures, 2015, 36(1): 1-12. DOI:10.14006/j.jzjgxb.2015.01.001. (in Chinese)
[19] Hachem M M. Bispec: A nonlinear spectral analysis program that performs bi-direction dynamic time-history analysis of pendulum system [R]. Berkeley, CA, USA: University of California at Berkeley, 2004.

相似文献/References:

[1]宋贞网,王修信.橡胶垫基础隔震建筑的地震作用简化计算[J].东南大学学报(自然科学版),2002,32(6):964.[doi:10.3969/j.issn.1001-0505.2002.06.031]
 Song Zhenwang,Wang Xiuxin.Simplified calculation formula of earthquake action of a base-isolated building with rubber bearings[J].Journal of Southeast University (Natural Science Edition),2002,32(6):964.[doi:10.3969/j.issn.1001-0505.2002.06.031]
[2]夏修身,陈兴冲,李建中.隔震桥梁合理结构阻尼模型[J].东南大学学报(自然科学版),2016,46(1):140.[doi:10.3969/j.issn.1001-0505.2016.01.023]
 Xia Xiushen,Chen Xingchong,Li Jianzhong.Reasonable structure damping model of isolated bridge[J].Journal of Southeast University (Natural Science Edition),2016,46(6):140.[doi:10.3969/j.issn.1001-0505.2016.01.023]

备注/Memo

备注/Memo:
收稿日期: 2018-06-20.
作者简介: 吴宜峰(1990—),男,博士,讲师,wuyifeng@bucea.edu.cn.
基金项目: 国家自然科学基金资助项目(51578151, 51438002)、北京建筑大学北京未来城市设计高精尖创新中心资助项目(UDC2016030200)、北京市市属高校基本科研业务费资助项目(X-18239).
引用本文: 吴宜峰,李爱群,王浩,等.近断层脉冲地震作用下隔震桥梁等延性位移系数谱[J].东南大学学报(自然科学版),2018,48(6):1044-1049. DOI:10.3969/j.issn.1001-0505.2018.06.009.
更新日期/Last Update: 2018-11-20