# [1]洪俊,李建兴,沈月,等.多面体颗粒的接触识别及离散元动力学建模[J].东南大学学报(自然科学版),2018,48(6):1082-1087.[doi:10.3969/j.issn.1001-0505.2018.06.014] 　Hong Jun,Li Jianxing,Shen Yue,et al.Contact detection and dynamic model for polyhedral particles based on discrete element method[J].Journal of Southeast University (Natural Science Edition),2018,48(6):1082-1087.[doi:10.3969/j.issn.1001-0505.2018.06.014] 点击复制 多面体颗粒的接触识别及离散元动力学建模() 分享到： var jiathis_config = { data_track_clickback: true };

48

2018年第6期

1082-1087

2018-11-20

## 文章信息/Info

Title:
Contact detection and dynamic model for polyhedral particles based on discrete element method

1东南大学土木工程学院, 南京 211189; 2东南大学江苏省工程力学分析重点实验室, 南京 211189
Author(s):
1School of Civil Engineering, Southeast University, Nanjing 211189, China
2Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 211189, China

Keywords:

O347.7
DOI:
10.3969/j.issn.1001-0505.2018.06.014

Abstract:
In order to simulate the real shape and the motion of polyhedral particles, the dynamic model for a polyhedral particle system based on the discrete element method(DEM)was proposed by an efficient collision detection algorithm. The linked linear list method was used to establish the neighbor list of the adjacent particle pairs which may be in contact. The improved ray crossing method was applied to determine whether the particle pairs in the neighbor list were actually in contact. The model of the contact force between particles was established, and the motion of the single particle was described by the Verlet integral. Finally, the motion state of the whole particle system was obtained, and two numerical simulations of the packing of polyhedral particle system under gravity were carried out. The simulation results show that, for polyhedral particles, the linked linear list method can establish the neighbor list of the particle system at a high efficiency. The improved ray crossing method can efficiently detect various complex contacts between polyhedral particles. The dynamic model can objectively reflect the motion state of the polyhedral particle system. The improved ray crossing method can effectively solve the dynamic model problem of the polyhedral particle system considering the real shape of polyhedral particles.

## 参考文献/References:

[1] Zhong W Q, Yu A B, Liu X J, et al. DEM/CFD-DEM modelling of non-spherical particulate systems:Theoretical developments and applications[J]. Powder Technology, 2016, 302: 108-152. DOI:10.1016/j.powtec.2016.07.010.
[2] Rakotonirina A D, Delenne J Y, Radjai F, et al. Grains3D, a flexible DEM approach for particles of arbitrary convex shape—Part Ⅲ: Extension to non-convex particles modelled as glued convex particles[J]. Computational Particle Mechanics, 2018: 1-30. DOI:10.1007/s40571-018-0198-3.
[3] Lu G,Third J R, Köhl M H, et al. On the occurrence of polygon-shaped patterns in vibrated cylindrical granular beds[J]. The European Physical Journal E, 2012, 35(9): 1-5. DOI:10.1140/epje/i2012-12090-1.
[4] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. DOI: 10.1680/geot.1979.29.1.47.
[5] Cleary P W, Sinnott M D. Simulation of particle flows and breakage in crushers using DEM: Part 1—Compression crushers[J]. Minerals Engineering, 2015, 74: 178-197. DOI:10.1016/j.mineng.2014.10.021.
[6] Lisjak A, Grasselli G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(4): 301-314. DOI:10.1016/j.jrmge.2013.12.007.
[7] Lu G, Third J R, Müller C R. Discrete element models for non-spherical particle systems: From theoretical developments to applications[J]. Chemical Engineering Science, 2015, 127: 425-465. DOI:10.1016/j.ces.2014.11.050.
[8] Alonso-Marroquín F, Vardoulakis I, Herrmann H J, et al. Effect of rolling on dissipation in fault gauges[J]. Physical Review Letters E, 2006, 74(3): 031306. DOI:10.1103/PhysRevE.74.031306.
[9] Cleary P W. DEM prediction of industrial and geophysical particle flows[J]. Particuology, 2010, 8(2): 106-118. DOI:10.1016/j.partic.2009.05.006.
[10] Cundall P A. Formulation of a three-dimensional distinct element model: Part Ⅰ. A scheme to detect and represent contacts in a system composed of many polyhedral blocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(3): 107-116. DOI:10.1016/0148-9062(88)92293-0.
[11] Alobaid F, Baraki N, Epple B. Investigation into improving the efficiency and accuracy of CFD/DEM simulations[J]. Particuology, 2014, 16: 41-53. DOI:10.1016/j.partic.2013.11.004.
[12] Wachs A, Girolami L, Vinay G, et al. Grains3D, a flexible DEM approach for particles of arbitrary convex shape: Part Ⅰ: Numerical model and validations[J]. Powder Technology, 2012, 224: 374-389. DOI:10.1016/j.powtec.2012.03.023.
[13] Gilbert E G, Johnson D W, Keerthi S S. A fast procedure for computing the distance between complex objects in three-dimensional space[J]. IEEE Journal on Robotics and Automation, 1988, 4(2): 193-203. DOI:10.1109/56.2083.
[14] O′Rourke J. Computational geometry in C[M]. Cambridge: Cambridge University Press, 1998: 220-250.
[15] Muth B, Müller M K, Eberhard P, et al. Collision detection and administration methods for many particles with different sizes[J]. Human Vaccines, 2017, 6(7):524-527.
[16] 洪俊, 张镇, 刘俊, 等. 梯形载荷下伴随破碎的散粒体系统动力学分析[J]. 东南大学学报(自然科学版), 2015,45(4): 787-791. DOI:10.3969/j.issn.1001-0505.2015.04.030.
Hong Jun, Zhang Zhen, Liu Jun, et al. Dynamic analysis of granular system with fracture under ladder load[J]. Journal of Southeast University(Natural Science Edition), 2015, 45(4): 787-791. DOI:10.3969/j.issn.1001-0505.2015.04.030. (in Chinese)
[17] D?iugys A, Peters B. An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers[J]. Granular Matter, 2001, 3(4): 231-266. DOI:10.1007/pl00010918.