# [1]谢中取,李龙,罗翔,等.液压足式机器人关节驱动器的设计、建模与实验[J].东南大学学报(自然科学版),2018,48(6):1114-1122.[doi:10.3969/j.issn.1001-0505.2018.06.019] 　Xie Zhongqu,Li Long,Luo Xiang,et al.Design, modeling and experiment of hydraulic legged robot joint[J].Journal of Southeast University (Natural Science Edition),2018,48(6):1114-1122.[doi:10.3969/j.issn.1001-0505.2018.06.019] 点击复制 液压足式机器人关节驱动器的设计、建模与实验() 分享到： var jiathis_config = { data_track_clickback: true };

48

2018年第6期

1114-1122

2018-11-20

## 文章信息/Info

Title:
Design, modeling and experiment of hydraulic legged robot joint

Author(s):
School of Mechanical Engineering, Southeast University, Nanjing 211189, China

Keywords:

TP242
DOI:
10.3969/j.issn.1001-0505.2018.06.019

Abstract:
A rotary hydraulic joint driver with multiple seals was designed. Firstly, the parameters of the joint actuator and the dynamic seals were designed based on the design requirement. Then, the mathematical model of the actuator was built to obtain the transfer function of the electro-hydraulic position servo system with joint driver. And the stability of the system was analyzed. The system amplitude margin is 22.3 dB and the phase margin is 88.4°. The pole of the system was analyzed, the transfer function of the system was simplified and the optimal PID parameter was designed. Finally, the performance test and verification experiments of the joint drive system were carried out, and the bandwidth, the sealing efficiency of the joint actuator and the effects of robot walking under suspended and grounded conditions were tested. The results show that at the rated pressure 10 MPa, the system bandwidth can reach 5.6 Hz, the sealing efficiency of the driver was above 70%. Thus, the design of the joint actuator has the advantages of large bandwidth and good sealing effect, meeting the demands of high-speed walking of the legged robot.

## 参考文献/References:

[1] Nelson G, Saunders A, Neville N, et al. PETMAN: A humanoid robot for testing chemical protective clothing[J]. Journal of the Robotics Society of Japan, 2012, 30(4): 372-377. DOI:10.7210/jrsj.30.372.
[2] Kuindersma S, Deits R, Fallon M, et al. Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot[J]. Autonomous Robots, 2016, 40(3): 429-455. DOI:10.1007/s10514-015-9479-3.
[3] 丁良宏, 王润孝, 冯华山, 等. 浅析BigDog四足机器人[J]. 中国机械工程, 2012, 23(5): 505-514. DOI:10.3969/j.issn.1004-132X.2012.05.001.
Ding Lianghong, Wang Runxiao, Feng Huashan, et al. Brief analysis of a BigDog quadruped robot[J]. China Mechanical Engineering, 2012, 23(5): 505-514. DOI:10.3969/j.issn.1004-132X.2012.05.001. (in Chinese)
[4] 丁良宏. BigDog四足机器人关键技术分析[J]. 机械工程学报, 2015, 51(7): 1-22,23. DOI:10.3901/JME.2015.07.001.
Ding Lianghong. Key technology analysis of BigDog quadruped robot[J]. Journal of Mechanical Engineering, 2015, 51(7): 1-22,23. DOI:10.3901/JME.2015.07.001. (in Chinese)
[5] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28-34. DOI:10.6040/j.issn.1672-3961.0.2014.328.
Meng Jian, Li Yibin, Li Bin. Bound gait controlling method of quadruped robot[J]. Journal of Shandong University(Engineering Science), 2015, 45(3): 28-34. DOI:10.6040/j.issn.1672-3961.0.2014.328. (in Chinese)
[6] 柴汇, 孟健, 荣学文, 等. 高性能液压驱动四足机器人SCalf的设计与实现[J]. 机器人, 2014, 36(4): 385-391. DOI:10.13973/j.cnki.robot.2014.0385.
Chai Hui, Meng Jian, Rong Xuewen, et al. Design and implementation of SCalf, an advanced hydraulic quadruped robot[J]. Robot, 2014, 36(4): 385-391. DOI:10.13973/j.cnki.robot.2014.0385. (in Chinese)
[7] Semini C, Tsagarakis G, Guglielmino E, et al. Design of HyQ—A hydraulically and electrically actuated quadruped robot[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2011, 225(6): 831-849. DOI:10.1177/0959651811402275.
[8] Semini C, Barasuol V, Goldsmith J, et al. Design of the hydraulically actuated, torque-controlled quadruped robot HyQ2Max[J]. ASME Transactions on Mechatronics, 2017, 22(2): 635-646. DOI:10.1109/tmech.2016.2616284.
[9] Hyon S H, Suewaka D, Torii Y, et al. Development of a fast torque-controlled hydraulic humanoid robot that can balance compliantly[C]// IEEE-RAS, 15th International Conference on Humanoid Robots. Seoul, South Korea, 2015:576-581. DOI: 10.1109/HUMANOIDS.2015.7363420.
[10] Hyon S H, Suewaka D, Torii Y, et al. Design and experimental evaluation of a fast torque-controlled hydraulic humanoid robot[J]. ASME Transactions on Mechatronics, 2017, 22(2): 623-634. DOI:10.1109/tmech.2016.2628870.
[11] 闫伟鹏. 仿真转台用摆动式电液伺服马达关键密封及零件研究 [D]. 哈尔滨:哈尔滨工业大学机电工程学院,2013.
[12] Ayadi K, Brunetière N, Tournerie B, et al. Experimental and numerical study of the lubrication regimes of a liquid mechanical seal[J]. Tribology International, 2015, 92: 96-108. DOI:10.1016/j.triboint.2015.05.022.
[13] 成大先. 机械设计手册(单行本):弹簧 [M]. 5版.北京:化学工业出版社,2010:76-88.
[14] Blau Peter J. ASM handbook, volume 18—friction, lubrication, and wear technology [M].New York: ASM International, 2010:28-37.
[15] 易孟林,曹树平,刘银水. 电液控制技术 [M].武汉:华中科技大学出版社,2010:53-128.
[16] 中国航空附件研究所.电液伺服阀[R].南京:第六零九所,2011.
[17] 薛定宇.控制系统计算机辅助设计——Matlab语言与应用 [M]. 2版.北京:清华大学出版社,2006:260-281.
[18] Younkin G W. Industrial servo control systems: Fundamentals and applications [M]. New York, USA:Marcel Dekke, 2003:103-129.
[19] Luo X, Li W, Zhu C. Planning and control of COP-switch-based planar biped walking[J]. Journal of Bionic Engineering, 2011, 8(1): 33-48. DOI:10.1016/s1672-6529(11)60010-3.
[20] Luo X, Xu W L. Planning and control for passive dynamics based walking of 3D biped robots[J]. Journal of Bionic Engineering, 2012, 9(2): 143-155. DOI:10.1016/s1672-6529(11)60110-8.
[21] Luo X, Zhu L Q, Xia L. Principle and method of speed control for dynamic walking biped robots[J]. Robotics and Autonomous Systems, 2015, 66: 129-144. DOI:10.1016/j.robot.2014.11.017.