[1]李庆浩,赵陆海波,张彪,等.基于光场成像的气液两相流中气泡三维测量方法[J].东南大学学报(自然科学版),2018,48(6):1143-1151.[doi:10.3969/j.issn.1001-0505.2018.06.023]
 Li Qinghao,Zhao Luhaibo,Zhang Biao,et al.Three-dimensional measurement of bubble in gas-liquid flow by light field photography[J].Journal of Southeast University (Natural Science Edition),2018,48(6):1143-1151.[doi:10.3969/j.issn.1001-0505.2018.06.023]
点击复制

基于光场成像的气液两相流中气泡三维测量方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第6期
页码:
1143-1151
栏目:
能源与动力工程
出版日期:
2018-11-20

文章信息/Info

Title:
Three-dimensional measurement of bubble in gas-liquid flow by light field photography
作者:
李庆浩1赵陆海波2张彪1唐志永2许传龙1
1东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 2中国科学院上海高等研究院低碳转化与工程重点实验室, 上海 201210
Author(s):
Li Qinghao1 Zhao Luhaibo2 Zhang Biao2 Tang Zhiyong2 Xu Chuanlong1
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
关键词:
光场 气泡 三维重建 气液两相流
Keywords:
light field bubbles three-dimensional reconstruction gas-liquid two-phase flow
分类号:
TK314
DOI:
10.3969/j.issn.1001-0505.2018.06.023
摘要:
提出了一种基于光场成像的气液两相流中气泡三维测量方法,解决了传统成像仅能进行二维测量的问题.利用光场相机记录气液两相流场的光场信息,结合光场计算成像技术获取两相流场内气泡的全聚焦图像和重聚焦图像序列.通过对全聚焦图像进行二值化分割等图像处理,获得气泡深度方向上的投影,对重聚焦图像序列进行清晰度评价,获得气泡的深度信息.基于获取的气泡投影以及深度信息,实现气泡三维重建,进而统计气泡群尺寸分布、空间位置及含气率等参数.开展了系统标定和试验研究,试验结果表明,截面含气率在深度方向上与气泡深度分布一致,在垂直方向上呈周期性震荡变化;随着气流量从0.5 L/min增加至1.1 L/min,气泡数量从28呈正比增加至72,气泡平均直径在气流量达到0.9 L/min前保持在1.56 mm左右,在0.9 L/min后迅速增大,体含气率近似线性增加,气泡深度分布区间逐渐增大.气泡三维重建结果与气泡的产生规律一致,初步验证了方法的可行性.
Abstract:
A three-dimensional measurement method for bubble parameters in gas-liquid two-phase flow was proposed based on the light field photography for solving the problem that bubble parameters could only be measured in two-dimensional problems using conventional photography. The light field camera recorded the light field information of the gas-liquid two-phase flow, and then the total focus image and the refocused images of the bubbles in the two-phase flow field were obtained using a computational imaging technique. The image processing was performed by binarizing the total focus image to obtain the projection of bubbles in the depth direction and evaluating the sharpness of refocused images to obtain the depth of bubbles. Based on the bubble projection and depth information, the three-dimensional reconstruction of the bubbles was achieved, and the parameters, such as size distribution, spatial position and gas void fraction of bubbles were further calculated. The calibration and the experiment were made to evaluate the proposed method. Experimental results show that the cross-sectional void fraction in the depth direction is in agreement with the bubble depth distribution and oscillates periodically in the vertical direction. With the increase of gas flow rates from 0.5 L/min to 1.1 L/min, the amount of bubbles increases from 28 to 72; the average diameter of bubbles maintains about 1.56 mm before the gas flow rate reaches 0.9 L/min, after increasing sharply; the gas volume fraction rises approximately linearly, and the bubble depth interval increases gradually. The three-dimensional reconstruction results of bubbles are in good agreement with the law of bubble formation and distribution, thus verifying the feasibility of the proposed method.

参考文献/References:

[1] Zhang J J, Gao Z M, Cai Y T, et al. Mass transfer in gas-liquid stirred reactor with various triple-impeller combinations[J]. Chinese Journal of Chemical Engineering, 2016, 24(6): 703-710. DOI:10.1016/j.cjche.2015.12.008.
[2] 张磊, 刘平, 马锦, 等. 基于微气泡曝气的生物膜反应器处理废水研究[J]. 环境科学, 2013, 34(6): 2277-2282. DOI:10.13227/j.hjkx.2013.06.044.
Zhang Lei, Liu Ping, Ma Jin, et al. Wastewater treatment using a microbubble aerated biofilm reactor[J]. Environmental Science, 2013, 34(6): 2277-2282. DOI:10.13227/j.hjkx.2013.06.044. (in Chinese)
[3] Liu F, Zhao C C, Zhao D F, et al. Tertiary treatment of textile wastewater with combined media biological aerated filter(CMBAF)at different hydraulic loadings and dissolved oxygen concentrations[J]. Journal of Hazardous Materials, 2008, 160(1): 161-167. DOI:10.1016/j.jhazmat.2008.02.100.
[4] 郭欣. 平板气升环流式光生物反应器内流体力学、传质及营养元素代谢的研究[D]. 青岛:青岛科技大学化工学院, 2014.
[5] 王红一. 水中气泡图像处理方法及运动特性研究[D]. 天津:天津大学电气与自动化工程学院, 2011.
[6] Lee B W,Dudukovic M P. Time-series analysis of optical probe measurements in gas-liquid stirred tanks[J]. Chemical Engineering Science, 2014, 116: 623-634. DOI:10.1016/j.ces.2014.05.048.
[7] Belousov A P, Belousov P Y, Borynyak L A. Determination of the velocity and size of bubbles in two-phase flows by using a laser doppler anemometer[J]. Optoelectronics Instrumentation and Data Processing, 2015, 51(6): 573-576. DOI:10.3103/s8756699015060072.
[8] Tian L, Loomis N, Domínguez-Caballero J A, et al. Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography[J]. Applied Optics, 2010, 49(9): 1549-1554. DOI:10.1364/ao.49.001549.
[9] Jin H, Wang M, Williams R A. Analysis of bubble behaviors in bubble columns using electrical resistance tomography[J].Chemical Engineering Journal, 2007, 130(2/3): 179-185. DOI:10.1016/j.cej.2006.08.032.
[10] Besagni G, Brazzale P, Fiocca A, et al. Estimation of bubble size distributions and shapes in two-phase bubble column using image analysis and optical probes[J]. Flow Measurement and Instrumentation, 2016, 52: 190-207. DOI:10.1016/j.flowmeasinst.2016.10.008.
[11] Karn A, Ellis C, Arndt R, et al. An integrative image measurement technique for dense bubbly flows with a wide size distribution[J]. Chemical Engineering Science, 2015, 122: 240-249. DOI:10.1016/j.ces.2014.09.036.
[12] Sun J,Xu C L, Zhang B, et al. Three-dimensional temperature field measurement of flame using a single light field camera[J]. Optics Express, 2016, 24(2): 1118-1132. DOI:10.1364/oe.24.001118.
[13] Gortler S J. The lumigraph[J]. Acm Siggraph Computer Graphics, 1996, 96: 43-54.
[14] 秦晓慧. 基于数字图像处理的水中微气泡参数的测量研究[D]. 秦皇岛:燕山大学信息科学与工程学院, 2012.
[15] 穆晶晶. 基于凹点检测与PCA混合降维的气液两相流气泡分割重构与流型识别研究[D]. 杭州:浙江大学机械工程学院, 2017.
[16] Zhao W C, Zhang B, Xu C L, et al. Optical sectioning tomographic reconstruction of three-dimensional flame temperature distribution using single light field camera[J]. IEEE Sensors Journal, 2018, 18(2): 528-539. DOI:10.1109/jsen.2017.2772899.
[17] 王鸿南, 钟文, 汪静, 等. 图像清晰度评价方法研究[J]. 中国图象图形学报A辑, 2004, 9(7): 828-831.2004, 9(7): 828-831. DOI:10.3969/j.issn.1006-8961.2004.07.011.
Wang Hongnan, Zhong Wen, Wang Jing, et al. Research of measurement for digital image definition[J]. Journal of Image and Graphics, 2004, 9(7): 828-831. DOI:10.3969/j.issn.1006-8961.2004.07.011. (in Chinese)

相似文献/References:

[1]蔡崧,邢春礼.用电磁感应法测量磁流化床气泡特性的实验研究[J].东南大学学报(自然科学版),1990,20(2):70.[doi:10.3969/j.issn.1001-0505.1990.02.011]
 An Experimental Research of Bubble Properties in Magnetic Fluidized Beds by Use of Magnetic Inductive Method[J].Journal of Southeast University (Natural Science Edition),1990,20(6):70.[doi:10.3969/j.issn.1001-0505.1990.02.011]
[2]马立群,廖恒成.金属熔体中高强超声空化气泡运动的数值研究[J].东南大学学报(自然科学版),1998,28(4):145.[doi:10.3969/j.issn.1001-0505.1998.04.029]
 Ma Liqun,Liao Hengcheng,Liao Hengcheng.Numerical Research on Movement of Cavitation Bubble in Metal Melt under High Intensity Ultrasound[J].Journal of Southeast University (Natural Science Edition),1998,28(6):145.[doi:10.3969/j.issn.1001-0505.1998.04.029]

备注/Memo

备注/Memo:
收稿日期: 2018-03-09.
作者简介: 李庆浩(1993—),男,硕士生; 许传龙(联系人),男,博士,教授,博士生导师,chuanlongxu@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51676044)、江苏省自然科学基金资助项目(BK20150622, BK20150023)、中国科学院低碳转化科学与工程重点实验室开放课题资助项目(KLLCCSE-201703,SARI, CAS).
引用本文: 李庆浩,赵陆海波,张彪,等.基于光场成像的气液两相流中气泡三维测量方法[J].东南大学学报(自然科学版),2018,48(6):1143-1151. DOI:10.3969/j.issn.1001-0505.2018.06.023.
更新日期/Last Update: 2018-11-20