[1]刘少波,李爱群,张瑞君,等.复合型泡沫铝/聚氨酯阻尼器在相邻结构减震控制中的应用[J].东南大学学报(自然科学版),2019,49(1):61-67.[doi:10.3969/j.issn.1001-0505.2019.01.009]
 Liu Shaobo,Li Aiqun,Zhang Ruijun,et al.Application of hybrid aluminum foam/polyurethane damper on seismic response control of adjacent structures[J].Journal of Southeast University (Natural Science Edition),2019,49(1):61-67.[doi:10.3969/j.issn.1001-0505.2019.01.009]
点击复制

复合型泡沫铝/聚氨酯阻尼器在相邻结构减震控制中的应用()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第1期
页码:
61-67
栏目:
土木工程
出版日期:
2019-01-20

文章信息/Info

Title:
Application of hybrid aluminum foam/polyurethane damper on seismic response control of adjacent structures
作者:
刘少波1李爱群12张瑞君1古宝铖3
1东南大学土木工程学院, 南京 210096; 2北京建筑大学土木与交通工程学院, 北京 100044; 3 岭南建筑设计咨询有限公司, 佛山 528200
Author(s):
Liu Shaobo1 Li Aiqun12 Zhang Ruijun1 Gu Baocheng3
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
3Lingnan Architectural Design Consulting Co., Ltd., Foshan 528200, China
关键词:
泡沫铝/聚氨酯复合材料 阻尼器 减震控制 相邻结构 地震碰撞
Keywords:
aluminum foam/polyurethane composites damper seismic control adjacent structure seismic pounding
分类号:
TU352.1
DOI:
10.3969/j.issn.1001-0505.2019.01.009
摘要:
根据泡沫铝/聚氨酯复合材料(AF/PU)的摩擦性能与循环压缩变形特点,研制出一种由AF/PU抗碰撞装置和摩擦耗能装置组成的复合型AF/PU阻尼器.该阻尼器在小位移时可平稳出力,超过设计位移后输出力会随位移迅速增长.基于此特点,利用OpenSEES软件编写了该阻尼器的理论模型.以相邻8层与3层框架结构为例,研究了该阻尼器对相邻结构的减震控制,并与黏滞流体阻尼器的减震效果进行了对比.结果表明:相邻结构间距较小时,采用黏滞流体阻尼器连接的相邻结构依然会发生碰撞;复合型AF/PU阻尼器的两阶段出力不仅能够为相邻结构提供耗能减震作用,还可有效解决相邻结构的地震碰撞,并且其减震效果优于黏滞流体阻尼器.
Abstract:
According to the friction properties and cyclic compression deformation of aluminum foam/polyurethane composites(AF/PU), a hybrid AF/PU damper including an anti-collision device and two friction energy dissipation devices was proposed. The output force of the damper was stable at the small displacement but was rapidly enhanced with the displacement after exceeding the designed displacement. Based on the feature, a theoretical model for the damper was compiled by OpenSEES software. The adjacent 8-storey and 3-storey frame structures were established to analyze the seismic response control of adjacent structures using the hybrid AF/PU damper. Moreover, the earthquake mitigation effect of the hybrid AF/PU damper was compared with that of the fluid viscous damper. The results show that the adjacent buildings connected by the fluid viscous damper are still suffered by seismic pounding at the small distance. However, the two-phased output force of the hybrid AF/PU damper can not only provide the energy dissipation for adjacent structures, but also effectively solve the seismic pounding between the adjacent structures. Furthermore, the earthquake mitigation effect of the hybrid AF/PU damper is better than that of the fluid viscous damper.

参考文献/References:

[1] 杨永强,戴君武,公茂盛,等.芦山地震中相邻建筑碰撞破坏调查与分析[J].哈尔滨工业大学学报,2015,47(12):102-105. DOI:10.11918/j.issn.0367-6234.2015.12.018.
Yang Y Q, Dai J W, Gong M S, et al. Investigation and analysis on adjacent buildings pounding damage in Lushan earthquake [J]. Journal of Harbin Institute of Technology, 2015, 47(12):102-105. DOI:10.11918/j.issn.0367-6234.2015.12.018.(in Chinese).
[2] 蒋姗. 基于量纲分析的地震作用下相邻建筑结构碰撞反应研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
   Jiang S. Dimensional analysis of earthquake-induced pounding between adjacent buildings[D]. Harbin: Harbin Institute of Technology, 2015.(in Chinese)
[3] Kasai K, Maison B F. Building pounding damage during the 1989 Loma Prieta earthquake[J]. Engineering Structures, 1997, 19(3): 195-207. DOI:10.1016/S0141-0296(96)00082-X.
[4] Rathje E M, Karatas I, Wright S G, et al. Coastal failures during the 1999 Kocaeli earthquake in Turkey[J].Soil Dynamics and Earthquake Engineering, 2004, 24: 699-712. DOI:10.1016/j.soildyn.2004.06.003.
[5] Meli R. Effects of the september 19, 1985 earthquake on the buildings of Mexico city[M]// Meli R. Second Century of the Skyscraper. Boston, MA, USA: Springer, 1988: 667-678. DOI:10.1007/978-1-4684-6581-5_57.
[6] Cole G L, Dhakal R P, Turner F M. Building pounding damage observed in the 2011 Christchurch earthquake[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(5): 893-913. DOI:10.1002/eqe.1164.
[7] 中华人民共和国住房和城乡建设部. GB 50011—2010建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
[8] Liu S B, Li A Q. Hysteretic friction behavior of aluminum foam/polyurethane interpenetrating phase composites[J]. Composite Structures, 2018, 203: 18-29. DOI:10.1016/j.compstruct.2018.07.004.
[9] Liu S B, Li A Q, He S Y, et al. Cyclic compression behavior and energy dissipation of aluminum foam-polyurethane interpenetrating phase composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 35-41. DOI:10.1016/j.compositesa.2015.07.016.
[10] 许祥, 刘伟庆, 徐秀丽. 结构地震碰撞分析的线性粘弹性碰撞模型[J]. 工程力学, 2013, 30(2): 278-284. DOI:10.6052/j.issn.1000-4750.2011.08.0551.
Xu X, Liu W Q, Xu X L. Linear viscoelastic model of earthquake-induced structural pounding [J]. Engineering Mechanics, 2013, 30(2): 278-284. DOI:10.6052/j.issn.1000-4750.2011.08.0551.(in Chinese).
[11] 吴巧云, 朱宏平, 陈楚龙. 连接Maxwell模型的两相邻结构非线性地震反应分析[J]. 工程力学, 2015, 32(9): 149-157.
  Wu Q Y, Zhu H P, Chen C L. Nonlinear seismic response analysis of two adjacent structures connected using the Maxwell model [J]. Engineering Mechanics, 2015, 32(9): 149-157.(in Chinese)
[12] 易凌, 吴从晓. 粘滞阻尼器连接的相邻隔震与非隔震建筑地震反应分析[J]. 工程抗震与加固改造, 2012, 34(4): 61-67,72. DOI:10.3969/j.issn.1002-8412.2012.04.011.
Yi L, Wu C X. Seismic response analysis of linking viscous dampers connecting base-isolated structure with adjacent building [J]. Earthquake Resistant Engineering and Retrofitting, 2012, 34(4): 61-67, 72. DOI:10.3969/j.issn.1002-8412.2012.04.011. (in Chinese)
[13] 刘少波.泡沫铝复合材料的力学性能及减震应用试验研究[D]. 南京:东南大学,2018.
  Liu S B. Experimental study on mechanical behaviors of aluminum foam composites and their application in seismic energy dissipation[D]. Nanjing: Southeast University, 2018.(in Chinese)

相似文献/References:

[1]李爱群,王浩.大跨悬索桥地震响应控制的阻尼器最优布置方法[J].东南大学学报(自然科学版),2009,39(2):315.[doi:10.3969/j.issn.1001-0505.2009.02.024]
 Li Aiqun,Wang Hao.Optimal placement method of dampers for seismic control of long-span suspension bridges[J].Journal of Southeast University (Natural Science Edition),2009,39(1):315.[doi:10.3969/j.issn.1001-0505.2009.02.024]
[2]李枝军,李爱群,缪长青,等.运营状态下南京长江二桥拉索索力测试与分析[J].东南大学学报(自然科学版),2007,37(6):1057.[doi:10.3969/j.issn.1001-0505.2007.06.023]
 Li Zhijun,Li Aiqun,Miao Changqing,et al.Measurement and analysis of cable tension in the second Nanjing Yangtze River Bridge under running condition[J].Journal of Southeast University (Natural Science Edition),2007,37(1):1057.[doi:10.3969/j.issn.1001-0505.2007.06.023]
[3]左晓宝,等.一种超弹性SMA复合阻尼器的设计与试验[J].东南大学学报(自然科学版),2004,34(4):459.[doi:10.3969/j.issn.1001-0505.2004.04.009]
 Zuo Xiaobao,Li Aiqun,et al.Design and experimental investigation of superelastic SMA damper[J].Journal of Southeast University (Natural Science Edition),2004,34(1):459.[doi:10.3969/j.issn.1001-0505.2004.04.009]
[4]肖尔田,韩玉林,李爱群,等.基于形状记忆合金超弹性阻尼器的结构振动控制和地震时程分析[J].东南大学学报(自然科学版),2003,33(5):605.[doi:10.3969/j.issn.1001-0505.2003.05.015]
 Xiao Ertian,Han Yulin,Li Aiqun,et al.Vibration control and earthquake transient dynamic analysis of a structural installation with a shape memory alloy pseudoelasticity damper[J].Journal of Southeast University (Natural Science Edition),2003,33(1):605.[doi:10.3969/j.issn.1001-0505.2003.05.015]
[5]王春林,吕志涛.基于地震动特性的悬挂减振结构性能[J].东南大学学报(自然科学版),2012,42(4):719.[doi:10.3969/j.issn.1001-0505.2012.04.027]
 Wang Chunlin,Lü Zhitao.Performance of vibration-controlling suspended-floor structures based on characteristics of earthquake motions[J].Journal of Southeast University (Natural Science Edition),2012,42(1):719.[doi:10.3969/j.issn.1001-0505.2012.04.027]
[6]李宗京,黄镇,李爱群.新型开洞软钢板阻尼器的理论及试验研究[J].东南大学学报(自然科学版),2013,43(2):392.[doi:10.3969/j.issn.1001-0505.2013.02.031]
 Li Zongjing,Huang Zhen,Li Aiqun.Theoretical and experimental study of new type of mild steel plate damper with opening[J].Journal of Southeast University (Natural Science Edition),2013,43(1):392.[doi:10.3969/j.issn.1001-0505.2013.02.031]
[7]闫聚考,彭天波,李建中.泰州长江公路大桥振动台试验——试验设计及抗震结构体系试验结果分析[J].东南大学学报(自然科学版),2014,44(2):357.[doi:10.3969/j.issn.1001-0505.2014.02.023]
 Yan Jukao,Peng Tianbo,Li Jianzhong.Shake table test of Taizhou Changjiang Highway Bridge: test design and result analysis of seismic structural system[J].Journal of Southeast University (Natural Science Edition),2014,44(1):357.[doi:10.3969/j.issn.1001-0505.2014.02.023]

备注/Memo

备注/Memo:
收稿日期: 2018-07-29.
作者简介: 刘少波(1985—),男,博士; 李爱群(联系人),男,博士,教授,博士生导师,aiqunli@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2017YFC0703602)、国家自然科学基金资助项目(51278104,51438002).
引用本文: 刘少波,李爱群,张瑞君,等.复合型泡沫铝/聚氨酯阻尼器在相邻结构减震控制中的应用[J].东南大学学报(自然科学版),2019,49(1):61-67. DOI:10.3969/j.issn.1001-0505.2019.01.009.
更新日期/Last Update: 2019-01-20