[1]施顺明,宋光明,刘盛松,等.基于多部位振动触觉反馈的室内为人导航系统[J].东南大学学报(自然科学版),2019,49(1):101-109.[doi:10.3969/j.issn.1001-0505.2019.01.015]
 Shi Shunming,Song Guangming,Liu Shengsong,et al.Indoor navigation system for human based on multi-site vibrotactile feedback[J].Journal of Southeast University (Natural Science Edition),2019,49(1):101-109.[doi:10.3969/j.issn.1001-0505.2019.01.015]
点击复制

基于多部位振动触觉反馈的室内为人导航系统()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第1期
页码:
101-109
栏目:
自动化
出版日期:
2019-01-20

文章信息/Info

Title:
Indoor navigation system for human based on multi-site vibrotactile feedback
作者:
施顺明1宋光明1刘盛松2韦中1李松涛1宋爱国1
1东南大学仪器科学与工程学院, 南京 210096; 2江苏电力公司电力调度控制中心, 南京 210024
Author(s):
Shi Shunming1 Song Guangming1 Liu Shengsong2 Wei Zhong1 Li Songtao1 Song Aiguo1
1School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
2Electric Power Dispatching and Control Center, Jiangsu Electric Power Company, Nanjing 210024, China
关键词:
人机协作导航算法 多部位触觉反馈 自主导航机器人 人体跟踪
Keywords:
human-robot cooperative navigation algorithm multi-site tactile feedback autonomous navigation robot human body tracking
分类号:
TP24
DOI:
10.3969/j.issn.1001-0505.2019.01.015
摘要:
为了改善传统为人导航系统的导航效果,设计了一种基于多部位振动触觉反馈的为人导航系统.该系统以具有自主导航功能的移动机器人为基础,运用充分考虑用户在系统中自主性和舒适性的人机协作导航算法,使用户能自由地选择行走速度.通过统计学方法研究人体各部位振动触觉感知能力,发现手指和手腕适合充当振动触觉信号的感知部位.开发多部位振动触觉装置作为系统的人机接口,利用该人机接口和人机协作导航算法实现了系统的自主为人导航.系统性能验证实验结果表明,基于多部位振动触觉反馈的导航系统具有良好的抗干扰能力,平均队形误差均值为0.23 m,导航速度为0.13 m/s,优于基于运动觉反馈的导航系统和基于单部位振动触觉反馈的导航系统.
Abstract:
To improve the navigation performance of the traditional navigation system for human, a navigation system for human based on multi-site vibrotactile feedback is designed. The system is based on an autonomous navigation mobile robot. The human-robot cooperative navigation algorithm which gives full consideration to the user’s autonomy and comfort is applied to make the user to freely decide his/her own speed. By using statistical methods to research the ability for vibrotactile perception of body parts, it’s found that fingers and wrists are suitable for feeling vibrotactile signals. Therefore, a multi-site vibrotactile device is developed as a human-robot interface. This human-robot interface and human-robot cooperative navigation algorithm is utilized to make the system implement autonomous navigation for people. The experimental results of system performance validation show that the navigation system based on multi-site vibrotactile feedback has good anti-jamming capability. The mean of the formation error is 0.23 m, and the navigation speed is 0.13 m/s. It has better performance than the navigation system based on the kinaesthetic and the one based on the single-site vibrotactile feedback.

参考文献/References:

[1] Ghiani G, Leporini B, Paternò F. Vibrotactile feedback to aid blind users of mobile guides[J]. Journal of Visual Languages & Computing, 2009, 20(5): 305-317. DOI:10.1016/j.jvlc.2009.07.004.
[2] Mekhalfi M L, Melgani F, Zeggada A, et al. Recovering the sight to blind people in indoor environments with smart technologies[J]. Expert Systems with Applications, 2016, 46: 129-138. DOI:10.1016/j.eswa.2015.09.054.
[3] Ni D J, Song A G,Tian L, et al. A walking assistant robotic system for the visually impaired based on computer vision and tactile perception[J]. International Journal of Social Robotics, 2015, 7(5): 617-628. DOI:10.1007/s12369-015-0313-z.
[4] Wachaja A, Agarwal P, Zink M, et al. Navigating blind people with walking impairments using a smart walker[J]. Autonomous Robots, 2017, 41(3): 555-573. DOI:10.1007/s10514-016-9595-8.
[5] Lykawka C, Stahl B K, Campos M D B, et al. Tactile interface design for helping mobility of people with visual disabilities[C]//2017 IEEE 41st Annual Computer Software and Applications Conference(COMPSAC). Turin, Italy, 2017: 851-860. DOI:10.1109/COMPSAC.2017.227.
[6] Filipe V,Fernandes F, Fernandes H, et al. Blind navigation support system based on microsoft Kinect[J]. Procedia Computer Science, 2012, 14: 94-101. DOI:10.1016/j.procs.2012.10.011.
[7] Galatas G, McMurrough C, Mariottini G L, et al. EyeDog: An assistive-guide robot for the visually impaired [C]//Proceedings of the 4th International Conference on Pervasive Technologies Related to Assistive Environments. Heraklion, Greece, 2011:58. DOI:10.1145/2141622.2141691.
[8] Lazzouni L, Lepore F. Compensatory plasticity: Time matters[J]. Frontiers in Human Neuroscience, 2014, 8: 340. DOI:10.3389/fnhum.2014.00340.
[9] Penders J, Ghosh A. Human robot interaction in the absence of visual and aural feedback: Exploring the haptic sense[J]. Procedia Computer Science, 2015, 71: 185-195. DOI:10.1016/j.procs.2015.12.197.
[10] Peng H, Song G M, You J, et al. An indoor navigation service robot system based on vibration tactile feedback[J]. International Journal of Social Robotics, 2017, 9(3): 331-341. DOI:10.1007/s12369-017-0403-1.
[11] 刘杰, 宋光明, 彭璜, 等. 基于振动触觉的移动机器人为人导航系统[J]. 东南大学学报(自然科学版),2016, 46(5): 1013-1019. DOI:10.3969/j.issn.1001-0505.2016.05.020.
Liu J, Song G M, Peng H, et al. Mobile robotic navigation system for human based on vibro-tactile perception[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(5): 1013-1019. DOI:10.3969/j.issn.1001-0505.2016.05.020. (in Chinese)
[12] Scheggi S, Aggravi M, Morbidi F, et al. Cooperative human-robot haptic navigation[C]//2014 IEEE International Conference on Robotics and Automation(ICRA). Hong Kong, China, 2014: 2693-2698. DOI:10.1109/ICRA.2014.6907245.
[13] 于宁波, 王石荣, 徐昌. 一种基于RGB-D的移动机器人未知室内环境自主探索与地图构建方法[J].机器人, 2017, 39(6): 860-871. DOI:10.13973/j.cnki.robot.2017.0860.
Yu N B, Wang S R, Xu C. RGB-D based autonomous exploration and mapping of a mobile robot in unknown indoor environment[J]. Robot, 2017, 39(6): 860-871. DOI:10.13973/j.cnki.robot.2017.0860. (in Chinese)
[14] Das A K,Fierro R, Kumar V, et al. A vision-based formation control framework[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 813-825. DOI:10.1109/tra.2002.803463.
[15] Arechavaleta G, Laumond J P, Hicheur H, et al. On the nonholonomic nature of human locomotion[J]. Autonomous Robots, 2008, 25(1/2): 25-35. DOI:10.1007/s10514-007-9075-2.
[16] Karuei I, MacLean K E, Foley-Fisher Z, et al. Detecting vibrations across the body in mobile contexts[C]//Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems. Vancouver, BC, Canada, 2011: 3267-3276. DOI:10.1145/1978942.1979426.
[17] Riener A. Sensor-actuator supported implicit interaction in driver assistance systems[M]. Wiesbaden: Vieweg+Teubner, 2010: 221-230. DOI:10.1007/978-3-8348-9777-0.
[18] Lederman S J,Klatzky R L. Haptic perception: A tutorial [J]. Attention, Perception, & Psychophysics, 2009, 71(7): 1439-1459. DOI:10.3758/app.71.7.1439.

备注/Memo

备注/Memo:
收稿日期: 2018-06-04.
作者简介: 施顺明(1993—),男,硕士生;宋光明(联系人),男,博士,教授,博士生导师,mikesong@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61375076)、东南大学优秀博士学位论文培养基金资助项目(YBJJ1794).
引用本文: 施顺明,宋光明,刘盛松,等.基于多部位振动触觉反馈的室内为人导航系统[J].东南大学学报(自然科学版),2019,49(1):101-109. DOI:10.3969/j.issn.1001-0505.2019.01.015.
更新日期/Last Update: 2019-01-20