[1]陈超,邵应娟,钟文琪,等.煤在加压流化床富氧燃烧条件下的碳转化规律[J].东南大学学报(自然科学版),2019,49(1):171-177.[doi:10.3969/j.issn.1001-0505.2019.01.024]
 Chen Chao,Shao Yingjuan,Zhong Wenqi,et al.Carbon conversion rules of oxy-fuel coal combustion in pressurized fluidized bed[J].Journal of Southeast University (Natural Science Edition),2019,49(1):171-177.[doi:10.3969/j.issn.1001-0505.2019.01.024]
点击复制

煤在加压流化床富氧燃烧条件下的碳转化规律()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第1期
页码:
171-177
栏目:
能源与动力工程
出版日期:
2019-01-20

文章信息/Info

Title:
Carbon conversion rules of oxy-fuel coal combustion in pressurized fluidized bed
作者:
陈超邵应娟钟文琪庞磊龚正
东南大学能源热转换及其过程测控教育部重点实验室, 南京210096
Author(s):
Chen Chao Shao Yingjuan Zhong Wenqi Pang Lei Gong Zheng
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
气固燃烧 富氧燃烧 加压流化床 碳转化率 CO2生成率
Keywords:
gas-solid combustion oxy-fuel combustion pressurized fluidized bed carbon conversion rate CO2 generation rate
分类号:
TK16
DOI:
10.3969/j.issn.1001-0505.2019.01.024
摘要:
在15kW加压流化床富氧燃烧实验台上,进行了内蒙古烟煤在850~900℃下的加压富氧燃烧实验,研究了压力为0.1~0.4MPa、空气和21%~30%氧浓度的O2/CO2气氛下燃烧的碳转化规律.研究结果表明:稳态富氧燃烧条件下,加压流化床富氧燃烧实验台干烟气中CO2浓度均超过90%.提高燃烧压力有利于提高碳转化率和CO2生成率,有利于降低CO生成率.在压力0.1~0.3MPa范围内,CO2生成率随着压力的增加基本呈线性递增关系,从85%左右增加到93%左右.进一步增加压力,CO2生成率逐渐趋于平稳,并保持在较高水平.在压力为0.4MPa条件下,CO2生成率增加到95%左右.提高O2/CO2气氛的氧浓度能够提高碳转化率和CO2生成率,但是随着压力的提高,氧浓度对碳转化率和CO2生成率的影响减小.
Abstract:
A combustion experiment of the Inner Mongolia bituminous coal was conducted at furnace temperature from 850 to 900℃ in a 15kW pressurized oxy-fuel fluidized bed. The carbon conversion rules were investigated in the pressure range from 0.1 to 0.4MPa, and in the atmosphere between air and O2/CO2 mixtures. The results show that the CO2 concentration at the outlet of the pressurized fluidized bed is over 90% under the steady condition of oxy-fuel combustion. Increasing combustion pressure can increase the carbon conversion rate and reduce the CO2 generation rate. The CO2 generation rate is linearly increased from about 85% to 93% with an increase in pressure from 0.1 to 0.3 MPa, while the CO2 generation rate reaches 95% at 0.4MPa. The CO2 generation rate gradually levels off and stays at a high level as the pressure further increases. The carbon conversion rate and the CO2 generation rate increase with the increase of O2 concentration. However, the impact of O2 concentration is weakened with the increase of the combustion pressure.

参考文献/References:

[1] Pettinau A, Ferrara F, Tola V, et al. Techno-economic comparison between different technologies for CO2-free power generation from coal[J]. Applied Energy, 2017, 193: 426-439. DOI:10.1016/j.apenergy.2017.02.056.
[2] Zebian H, Rossi N, Gazzino M, et al. Optimal design and operation of pressurized oxy-coal combustion with a direct contact separation column[J].Energy, 2013, 49: 268 278. DOI:10.1016/j.energy.2012.11.013.
[3] Gopan A, Kumfer B M, Axelbaum R L. Effect of operating pressure and fuel moisture on net plant efficiency of a staged, pressurized oxy-combustion power plant[J]. International Journal of Greenhouse Gas Control, 2015, 39: 390-396. DOI:10.1016/j.ijggc.2015.05.014.
[4] Xia F, Yang Z W, Adeosun A, et al. Pressurized oxy-combustion with low flue gas recycle: Computational fluid dynamic simulations of radiant boilers[J]. Fuel, 2016, 181: 1170-1178. DOI:10.1016/j.fuel.2016.04.023.
[5] 韩冬, 段伦博, 段钰锋, 等. 增压O2/CO2燃烧热力系统建模及压力优化 [J]. 中国电机工程学报, 2014, 34(5): 756-762.DOI: 10.13334/j.0258-8013.pcsee.2014.05.007.
Han D, Duan L B, Duan Y F, et al. Simulation and optimization of pressurized oxy-fuel combustion system [J]. Proceedings of the CSEE, 2014,34(5): 756-762. DOI:10.13334/j.0258-8013.pcsee.2014.05.007. (in Chinese)
[6] Zebian H, Mitsos A. Pressurized OCC(oxy-coal combustion)process ideally flexible to the thermal load [J]. Energy, 2014, 73: 416-429. DOI:10.1016/j.energy.2014.06.031.
[7] 刘前鑫,李大骥,时铭显,等. 增压流化床联合循环发电技术[M]. 南京: 东南大学出版社, 1998: 107-124.
[8] Roy B, Bhattacharya S. Combustion of single char particles from Victorian brown coal under oxy-fuel fluidized bed conditions[J].Fuel, 2016, 165: 477-483. DOI:10.1016/j.fuel.2015.10.099.
[9] Sadegh Seddighi K, Pallarès D, Normann F, et al. Carbon monoxide formation during oxy-fuel-fired fluidized-bed combustion[J]. Energy & Fuels, 2013, 27(4): 2275-2282. DOI:10.1021/ef3021393.
[10] Sher F, Pans M A, Sun C G, et al. Oxy-fuel combustion study of biomass fuels in a 20 kWth fluidized bed combustor[J]. Fuel, 2018, 215: 778-786. DOI:10.1016/j.fuel.2017.11.039.
[11] Li S Y, Xu M X, Jia L F, et al. Influence of operating parameters on N2O emission in O2 /CO2 combustion with high oxygen concentration in circulating fluidized bed[J]. Applied Energy, 2016, 173: 197-209. DOI:10.1016/j.apenergy.2016.02.054.
[12] Li H Y, Li S Y, Ren Q Q, et al. Experimental results for oxy-fuel combustion with high oxygen concentration in a 1 MWth pilot-scale circulating fluidized bed[J]. Energy Procedia, 2014, 63: 362-371. DOI:10.1016/j.egypro.2014.11.039.
[13] 毛玉如, 方梦祥, 骆仲泱, 等. 循环流化床富氧燃烧技术的试验研究[J]. 锅炉技术, 2004, 35(6): 27-31.DOI:10.3969/j.issn.1672-4763.2004.06.007.
Mao Y R, Fang M X, Luo Z Y, et al. Experimental study on oxygen enriched combustion technology on circulating fluidized bed test-facility[J]. Boiler Technology, 2004, 35(6): 27-31.DOI:10.3969/j.issn.1672-4763.2004.06.007. (in Chinese)
[14] 段伦博, 周骛, 屈成锐, 等. 50kW循环流化床O2/CO2气氛下煤燃烧及污染物排放特性[J]. 中国电机工程学报, 2011, 31(5): 7-12. DOI:10.13334/j.0258-8013.pcsee.2011.05.009.
Duan L B, Zhou W, Qu C R, et al. Combustion and pollutant emission characteristics of coal in a 50 kW circulating fluidized bed under O2/CO2 atmosphere[J]. Proceedings of the CSEE, 2011, 31(5): 7-12. DOI:10.13334/j.0258-8013.pcsee.2011.05.009. (in Chinese)
[15] Duan Y Q, Duan L B, Anthony E J, et al. Nitrogen and sulfur conversion during pressurized pyrolysis under CO2 atmosphere in fluidized bed[J]. Fuel, 2017, 189: 98-106. DOI:10.1016/j.fuel.2016.10.080.
[16] Li L, Duan Y Q, Duan L B, et al. Flow characteristics in pressurized oxy-fuel fluidized bed under hot condition[J]. International Journal of Multiphase Flow, 2018, 108: 1-10. DOI:10.1016/j.ijmultiphaseflow.2018.06.020.
[17] Bu C S, Pallarès D, Chen X P, et al. Oxy-fuel combustion of a single fuel particle in a fluidized bed: Char combustion characteristics, an experimental study[J]. Chemical Engineering Journal, 2016, 287(3): 649-656. DOI:10.1016/j.cej.2015.11.078.
[18] Bu C S, Gómez-Barea A, Leckner B, et al. Oxy-fuel conversion of sub-bituminous coal particles in fluidized bed and pulverized combustors[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3331-3339. DOI:10.1016/j.proci.2016.08.075.
[19] Li L, Duan L B, Zeng D, et al. Ignition and volatile combustion behaviors of a single lignite particle in a fluidized bed under O2/H2O condition [J]. Proceedings of the Combustion Institute, 2018, 44-1-44-9. DOI:10.1016/j.proci.2018.05.038.
[20] 应芝, 张彦威, 葛立超, 等. 加压O2/CO2气氛下煤粉着火特性的实验研究[J]. 中国电机工程学报, 2013, 33(8): 44-49,9. DOI:10.13334/j.0258-8013.pcsee.2013.08.010.
Ying Z, Zhang Y W, Ge L C, et al. Experimental research on ignition characteristics of pulverized coal under pressurized O2/CO2 atmosphere[J]. Proceedings of the CSEE, 2013, 33(8): 44-49,9.DOI:10.13334/j.0258-8013.pcsee.2013.08.010. (in Chinese)
[21] 胡海华, 段伦博, 陈晓平, 等. 增压O2/CO2气氛下煤燃烧特性实验研究[J]. 燃料化学学报, 2014, 42(4): 408-413.
  Hu H H, Duan L B, Chen X P, et al. Experimental investigation on pressurized coal combustion characteristics under O2/CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology, 2014, 42(4): 408-413.(in Chinese)
[22] Wang C B, Lei M, Yan W P, et al. Combustion characteristics and ash formation of pulverized coal under pressurized oxy-fuel conditions[J]. Energy & Fuels, 2011, 25(10): 4333-4344. DOI:10.1021/ef200956q.
[23] Lasek J A, Janusz M, Zuwaa J, et al. Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures[J]. Energy, 2013, 62(6): 105-112. DOI:10.1016/j.energy.2013.04.079.
[24] 孙晨亮, 章名耀. 压力下各种因素对煤粒着火温度的影响[J]. 燃烧科学与技术, 1999, 5(3): 313-318.
  Sun C L, Zhang M Y. Effects of various factors on the ignition temperature of coal particles under pressure[J]. Journal of Combustion Science and Technology, 1999, 5(3): 313-318.(in Chinese)
[25] Liu H, Zailani R, Gibbs B. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2 [J]. Fuel, 2005, 84: 833-840. DOI:10.1016/j.fuel.2004.11.018.
[26] Bu C S, Gómez-Barea A, Chen X P, et al. Effect of CO2 on oxy-fuel combustion of coal-char particles in a fluidized bed: Modeling and comparison with the conventional mode of combustion[J]. Applied Energy, 2016, 177: 247-259. DOI:10.1016/j.apenergy.2016.05.108.
[27] Sher F, Pans M A, Sun C G, et al. Oxy-fuel combustion study of biomass fuels in a 20 kWth fluidized bed combustor [J]. Fuel, 2018, 215: 778-786. DOI:10.1016/j.fuel.2017.11.039.
[28] Jin X D, Zhou Y G, Zheng S K. Numerical investigation of different effects of carbon dioxide properties and carbon monoxide oxidation on char particle combustion in actual and fictitious O2 /CO2 environments[J]. Fuel, 2018, 217: 59-65. DOI:10.1016/j.fuel.2017.12.040.
[29] Bürkle S, Dreizler A, Ebert V, et al. Experimental comparison of a 2D laminar diffusion flame under oxy-fuel and air atmosphere[J].Fuel, 2018, 212: 302-308. DOI:10.1016/j.fuel.2017.10.067.
[30] Zhang L, Binner E, Chen L G, et al. Experimental investigation of the combustion of bituminous coal in air and O2/CO2Mixtures: 1. Particle imaging of the combustion of coal and char[J]. Energy & Fuels, 2010, 24(9): 4803-4811. DOI:10.1021/ef100314k.

相似文献/References:

[1]周建新,邵壮,李崇,等.基于Aspen平台的Oxy-CFB燃烧侧动态特性模拟[J].东南大学学报(自然科学版),2014,44(6):1187.[doi:10.3969/j.issn.1001-0505.2014.06.017]
 Zhou Jianxin,Shao Zhuang,Li Chong,et al.Dynamic characteristics of Oxy-CFB combustion system based on Aspen[J].Journal of Southeast University (Natural Science Edition),2014,44(1):1187.[doi:10.3969/j.issn.1001-0505.2014.06.017]

备注/Memo

备注/Memo:
收稿日期: 2018-05-13.
作者简介: 陈超(1994—),男,硕士生;钟文琪(联系人),男,博士,教授,博士生导师,wqzhong@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2016YFB0600802)、国家自然科学基金重点资助项目(51736002).
引用本文: 陈超,邵应娟,钟文琪,等.煤在加压流化床富氧燃烧条件下的碳转化规律[J].东南大学学报(自然科学版),2019,49(1):171-177. DOI:10.3969/j.issn.1001-0505.2019.01.024.
更新日期/Last Update: 2019-01-20