参考文献/References:
[1] Dou Z C, Khalil I, Khreishah A, et al. Systematization of knowledge(SoK): A systematic review of software-based web phishing detection[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2797-2819. DOI:10.1109/comst.2017.2752087.
[2] 中国反钓鱼网站联盟秘书处. 2017年12月钓鱼网站处理简报[R]. 北京: 中国反钓鱼网站联盟, 2017.
[3] Gupta B B, Tewari A, Jain A K, et al. Fighting against phishing attacks: State of the art and future challenges[J]. Neural Computing and Applications, 2017, 28(12): 3629-3654. DOI:10.1007/s00521-016-2275-y.
[4] Seifollahi S, Bagirov A, Layton R, et al. Optimization based clustering algorithms for authorship analysis of phishing emails[J]. Neural Processing Letters, 2017, 46(2): 411-425. DOI:10.1007/s11063-017-9593-7.
[5] Siadati H, Nguyen T, Gupta P, et al. Mind your SMSes: Mitigating social engineering in second factor authentication[J]. Computers & Security, 2017, 65: 14-28. DOI:10.1016/j.cose.2016.09.009.
[6] Yang T Y,Dehghantanha A, Choo K K R, et al. Windows instant messaging app forensics: Facebook and skype as case studies[J]. PLoS One, 2016, 11(3): e0150300. DOI:10.1371/journal.pone.0150300.
[7] Aggarwal A, Rajadesingan A, Kumaraguru P. PhishAri: Automatic realtime phishing detection on twitter[C]//2012 ECrime Researchers Summit. Las Croabas, Puerto Rico, 2012: 1-12. DOI:10.1109/eCrime.2012.6489521.
[8] Jeong S Y, Koh Y S, Dobbie G. Phishing detection on twitter streams[M]//Jeong S Y, Koh Y S, Dobbie G, ed. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 141-153. DOI:10.1007/978-3-319-42996-0_12.
[9] Zhang Y, Hong J I, Cranor L F. Cantina: A content-based approach to detecting phishing web sites[C]// Proceedings of the 16th international conference on World Wide Web. Banff, Alberta, Canada, 2007: 639-648. DOI: 10.1145/1242572. 1242659.
[10] Tan C L,Chiew K L, Sze S N. Phishing webpage detection using weighted URL tokens for identity keywords retrieval[C]// 9th International Conference on Robotic, Vision, Signal Processing and Power Applications. Singapore: Springer, 2016: 133-139. DOI:10.1007/978-3-319-42996-0.
[11] Jain A K, Gupta B B. Phishing detection: Analysis of visual similarity based approaches[J]. Security and Communication Networks, 2017, 2017: 1-20. DOI:10.1155/2017/5421046.
[12] 胡向东, 刘可, 张峰, 等. 基于页面敏感特征的金融类钓鱼网页检测方法[J]. 网络与信息安全学报, 2017, 3(2): 31-38. DOI:10.11959/j.issn.2096-109x.2017.00122.
Hu X D, Liu K, Zhang F, et al. Financial phishing detection method based on sensitive characteristics of webpage[J]. Chinese Journal of Network and Information Security, 2017, 3(2): 31-38. DOI:10.11959/j.issn.2096-109x.2017.00122. (in Chinese)
[13] Ali W, Ali W. Phishing website detection based on supervised machine learning with wrapper features selection[J]. International Journal of Advanced Computer Science & Applications, 2017, 8(9): 72-78. DOI: 10.14569/ ijacsa.2017.080910.
[14] Dua D, Karra T E. UCI machine learning repository: Phishing websites data set[EB/OL]. [2018-03-12].https://archive.ics.uci.edu/ml//datasets/Phishing+Websites.
[15] Rao R S, Pais A R. Detection of phishing websites using an efficient feature-based machine learning framework[J]. Neural Computing & Applications, 2018,29(1): 1-23. DOI:10.1007/s00521-017-3305-0.
[16] Chen T, He T. XGboost: Extreme gradient boosting[EB/OL].[2018-03-12]. https://www.datacamp.com/courses/extreme-gradient-boosting-with-xgboost.
[17] Chen T, Guestrin C. XGboost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA, 2016: 785-794. DOI:10.1145/2939672.2939785.
[18] Ramanathan V, Wechsler H. Phishing website detection using latent dirichlet allocation and AdaBoost[C]//2012 IEEE International Conference on Intelligence and Security Informatics. Arlington, VA, USA, 2012: 102-107. DOI:10.1109/ISI.2012.6284100.
相似文献/References:
[1]陆建,孙祥龙,戴越.普通公路车速分布特性的回归分析[J].东南大学学报(自然科学版),2012,42(2):374.[doi:10.3969/j.issn.1001-0505.2012.02.034]
Lu Jian,Sun Xianglong,Dai Yue.Regression analysis on speed distribution characteristics of ordinary road[J].Journal of Southeast University (Natural Science Edition),2012,42(2):374.[doi:10.3969/j.issn.1001-0505.2012.02.034]
[2]倪富健,方昱,薛智敏.时间序列在路面平整度预测中的应用[J].东南大学学报(自然科学版),2006,36(4):634.[doi:10.3969/j.issn.1001-0505.2006.04.030]
Ni Fujian,Fang Yu,Xue Zhimin.Prediction of pavement roughness with time series autoregression model[J].Journal of Southeast University (Natural Science Edition),2006,36(2):634.[doi:10.3969/j.issn.1001-0505.2006.04.030]