[1]陈亚平,张治,朱子龙,等.串并联双压力蒸发卡林纳循环的性能分析[J].东南大学学报(自然科学版),2019,49(2):274-279.[doi:10.3969/j.issn.1001-0505.2019.02.011]
 Chen Yaping,Zhang Zhi,Zhu Zilong,et al.Performance analysis on series-parallel dual-pressure vaporization Kalina cycle[J].Journal of Southeast University (Natural Science Edition),2019,49(2):274-279.[doi:10.3969/j.issn.1001-0505.2019.02.011]
点击复制

串并联双压力蒸发卡林纳循环的性能分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第2期
页码:
274-279
栏目:
能源与动力工程
出版日期:
2019-03-20

文章信息/Info

Title:
Performance analysis on series-parallel dual-pressure vaporization Kalina cycle
作者:
陈亚平1张治12朱子龙1吴嘉峰1
1东南大学能源与环境学院, 南京 210096; 2 安徽工业大学建筑工程学院, 马鞍山 243002
Author(s):
Chen Yaping1 Zhang Zhi12 Zhu Zilong1 Wu Jiafeng1
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2 School of Civil Engineering and Architecture, Anhui Industrial University, Maanshan 243002, China
关键词:
双压力蒸发 卡林纳循环 热源梯级利用 动力回收效率 氨水动力循环
Keywords:
dual-pressure vaporization Kalina cycle cascade utilization of heat source power recovery efficiency ammonia-water power cycle
分类号:
TK113
DOI:
10.3969/j.issn.1001-0505.2019.02.011
摘要:
在卡林纳循环和串联的双压力蒸发卡林纳循环(DPV-KC)的基础上提出了一种串并联双压力蒸发卡林纳循环(DPV-KC2).通过设置压力相对较低的第二蒸发器,与第一蒸发器的液体加热段并联,第二蒸发器出口蒸气进入透平低压级段膨胀作功,使热源得到梯级利用,从而可以提高热源的动力回收效率.在外界冷热源温度相同的条件下,通过热力学原理对DPV-KC2、DPV-KC和基本型卡林纳循环的性能进行了分析.结果表明,在热源温度和冷却水温度分别为400和25 ℃、工作浓度和基本浓度分别为0.5和0.314、第一蒸发器露点温度和工质入口过冷度分别为290 ℃和15 K、第二蒸发器工质出口过热度为60 K时,DPV-KC2系统的动力回收效率达到26.34%,比单蒸发压力卡林纳循环提高了17.3%,比串联布置蒸发器的DPV-KC提高了3.58%.
Abstract:
A series-parallel dual-pressure vaporization Kalina cycle(DPV-KC2)was proposed based on the Kalina cycle and tandem dual-pressure vaporization Kalina cycle(DPV-KC). By setting the second evaporator with relatively lower pressure in parallel with the liquid heating section of the first evaporator, and the vapor from the second evaporator entered and expanded in the rear section of the turbine to do the additional work, the heat source and the power recovery efficiency of the system were improved. Under the same temperature conditions of the external cold and heat sources, the performances of the DPV-KC2 were analyzed and compared with those of the DPV-KC and basic Kalina cycle through thermodynamic principle. The results show that the heat source temperature and the cooling water temperature are 400 and 25 ℃, the work concentration and the basic concentration are 0.5 and 0.314, the dew point temperature and the inlet subcooling degree of the first evaporator are 290 ℃ and 15 K, and the superheat degree at the outlet of the second evaporator is 60 K, respectively. The power recovery efficiency of the DPV-KC2 system reaches 26.34%, it is 17.3% higher than that of the Kalina cycle with single evaporating pressure, or 3.58% higher than that of the DPV-KC with series arrangement of the evaporators.

参考文献/References:

[1] Kalina A I. Combined cycle system with novel bottoming cycle[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(4): 737. DOI:10.1115/1.3239632.
[2] Zhang X X, He M G, Zhang Y. A review of research on the Kalina cycle[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 5309-5318. DOI:10.1016/j.rser.2012.05.040.
[3] Bahrampoury R, Behbahaninia A. Thermodynamic optimization and thermoeconomic analysis of four double pressure Kalina cycles driven from Kalina cycle system 11[J]. Energy Conversion and Management, 2017, 152: 110-123. DOI:10.1016/j.enconman.2017.09.046.
[4] 陈亚平. 改进型卡列纳循环的热力分析[J]. 东南大学学报(自然科学版), 1989, 19(4): 52-59.
  Chen Y P. Thermodynamic analysis on a modified Kalina cycle[J]. Journal of Southeast University(Natural Science Edition), 1989, 19(4): 52-59.(in Chinese)
[5] 吕灿仁, 严晋跃, 马一太. Kalina循环的研究和开发及其提高效率的分析[J]. 热能动力工程, 1991, 6(1): 1-7, 12.
  Lü C R, Yan J Y, Ma Y T. The research and development of Kalina cycle and an analysis of its efficiency enhacement potentiality[J]. Journal of Engineering for Thermal Energy and Power, 1991, 6(1): 1-7, 12.(in Chinese)
[6] Hua J Y, Chen Y P, Wu J F. Thermal performance of a modified ammonia-water power cycle for reclaiming mid/low-grade waste heat[J]. Energy Conversion and Management, 2014, 85: 453-459. DOI:10.1016/j.enconman.2014.05.102.
[7] Padilla R V, Demirkaya G, Goswami D Y, et al. Analysis of power and cooling cogeneration using ammonia-water mixture[J]. Energy, 2010, 35(12): 4649-4657. DOI:10.1016/j.energy.2010.09.042.
[8] Liu M, Zhang N. Proposal and analysis of a novel ammonia-water cycle for power and refrigeration cogeneration[J]. Energy, 2007, 32(6): 961-970. DOI:10.1016/j.energy.2006.09.012.
[9] Hua J Y, Chen Y P, Wang Y D, et al. Thermodynamic analysis of ammonia-water power/chilling cogeneration cycle with low-grade waste heat[J]. Applied Thermal Engineering, 2014, 64(1/2): 483-490. DOI:10.1016/j.applthermaleng.2013.12.043.
[10] Zhang S B, Chen Y P, Wu J F, et al. Thermodynamic analysis on a modified Kalina cycle with parallel cogeneration of power and refrigeration[J]. Energy Conversion and Management, 2018, 163: 1-12. DOI:10.1016/j.enconman.2018.02.035.
[11] Zhang Z, Guo Z W, Chen Y P, et al. Power generation and heating performances of integrated system of ammonia-water Kalina-Rankine cycle[J]. Energy Conversion and Management, 2015, 92: 517-522. DOI:10.1016/j.enconman.2014.12.084.
[12] Chen Y P, Guo Z W, Wu J F, et al. Energy and exergy analysis of integrated system of ammonia-water Kalina-Rankine cycle[J]. Energy, 2015, 90: 2028-2037. DOI:10.1016/j.energy.2015.07.038.
[13] Guo Z W, Zhang Z, Chen Y P, et al. Dual-pressure vaporization Kalina cycle for cascade reclaiming heat resource for power generation[J]. Energy Conversion and Management, 2015, 106: 557-565. DOI:10.1016/j.enconman.2015.09.073.
[14] 张治.冬季热电联供的和双压力蒸发的氨水动力循环性能研究[D]. 南京:东南大学,2018.
  Zhang Z. Performance study on ammonia-water power cycles for power-heating cogeneration in winter and dual-pressure evaporation [D]. Nanjing: Southeast University, 2018.(in Chinese)

相似文献/References:

[1]郭占伟,陈亚平,吴嘉峰,等.卡林纳循环与氨水朗肯循环组合系统的热电联供性能[J].东南大学学报(自然科学版),2015,45(2):295.[doi:10.3969/j.issn.1001-0505.2015.02.018]
 Guo Zhanwei,Chen Yaping,Wu Jiafeng,et al.Properties of integrated system of Kalina cycle and ammonia-water Rankine cycle for power/heating cogeneration[J].Journal of Southeast University (Natural Science Edition),2015,45(2):295.[doi:10.3969/j.issn.1001-0505.2015.02.018]
[2]张少波,陈亚平,吴嘉峰,等.可调节比例的功/冷联供卡林纳循环系统性能研究[J].东南大学学报(自然科学版),2019,49(3):514.[doi:10.3969/j.issn.1001-0505.2019.03.016]
 Zhang Shaobo,Chen Yaping,Wu Jiafeng,et al.Performance investigation on Kalina cycle with adjustable ratio based power/refrigeration cogeneration system[J].Journal of Southeast University (Natural Science Edition),2019,49(2):514.[doi:10.3969/j.issn.1001-0505.2019.03.016]

备注/Memo

备注/Memo:
收稿日期: 2018-10-07.
作者简介: 陈亚平(1956—),男,博士,教授,博士生导师,ypgchen@sina.com.
基金项目: 国家自然科学基金资助项目(51776035).
引用本文: 陈亚平,张治,朱子龙,等.串并联双压力蒸发卡林纳循环的性能分析[J].东南大学学报(自然科学版),2019,49(2):274-279. DOI:10.3969/j.issn.1001-0505.2019.02.011.
更新日期/Last Update: 2019-03-20