# [1]张晨辉,邓长根,应武挡.轴压套管构件的典型破坏模式与极限承载力[J].东南大学学报(自然科学版),2019,49(2):311-320.[doi:10.3969/j.issn.1001-0505.2019.02.016] 　Zhang Chenhui,Deng Changgen,Ying Wudang.Typical failure mode and ultimate bearing capacity of sleeved compression member under axial compression[J].Journal of Southeast University (Natural Science Edition),2019,49(2):311-320.[doi:10.3969/j.issn.1001-0505.2019.02.016] 点击复制 轴压套管构件的典型破坏模式与极限承载力() 分享到： var jiathis_config = { data_track_clickback: true };

49

2019年第2期

311-320

2019-03-20

## 文章信息/Info

Title:
Typical failure mode and ultimate bearing capacity of sleeved compression member under axial compression

Author(s):
College of Civil Engineering, Tongji University, Shanghai 200092, China

Keywords:

TU391
DOI:
10.3969/j.issn.1001-0505.2019.02.016

Abstract:
The nonlinear finite element analysis model was established for the pinned-end steel sleeved compression member under axial compression. By the nonlinear finite element analysis of the sleeved compression members, the changing trend of the core moment distribution was obtained with the increase of the axial load, and the failure mechanism of the sleeved compression member was explained. The effects of the core slenderness ratio, the core protrusion length above sleeve, the gap between the sleeve and core, and the wall thickness ratio of the sleeve to core on the ultimate bearing capacity factor of the sleeved compression member were analyzed. The practical calculation formula for the ultimate bearing capacity of the sleeved compression member was fitted by the polynomial functions. The results show that the core section with the maximum moment shifts gradually to the end with the increase of the axial load. The ultimate bearing capacity of the sleeved compression member decreases once the core section near the end subjected to combined axial force and moment achieves full-section plasticity. The ultimate bearing capacity factor of the sleeved compression member increases with the increase of the core slenderness ratio and the decrease of the core protrusion length above sleeve and the gap between the sleeve and the core.

## 参考文献/References:

[1] Galambos T V, Surovek A E. Structural stability of steel[M]. Hoboken, NJ, USA: John Wiley & Sons, 2008: 318-319. DOI:10.1002/9780470261316.
[2] Ba?ant Z P. Structural stability[J]. International Journal of Solids and Structures, 2000, 37(1/2): 55-67. DOI:10.1016/S0020-7683(99)00078-5.
[3] 苏慈. 大跨度刚性空间钢结构极限承载力研究[D]. 上海: 同济大学, 2006.
Su C. Research on the limited capacity of rigid large-span steel space structures[D]. Shanghai: Tongji University, 2006.(in Chinese)
[4] 马腾飞, 赵淑丽, 李红梅, 等. 杆件屈曲对单层球面网壳稳定性能的影响研究[J]. 河北农业大学学报, 2013, 36(5): 113-117. DOI:10.13320/j.cnki.jauh.2013.05.025.
Ma T F, Zhao S L, Li H M, et al. Analysis of the member buckling influence to the stability of single-layer lattice dome[J]. Journal of Agricultural University of Hebei, 2013, 36(5): 113-117.DOI:10.13320/j.cnki.jauh.2013.05.025. (in Chinese)
[5] 罗永峰, 韩庆华, 李海旺. 建筑钢结构稳定理论与应用[M]. 北京: 人民交通出版社, 2010: 54-57.
[6] Abedi K, Parke G A R. Progressive collapse of single-layer braced domes[J].International Journal of Space Structures, 1996, 11(3): 291-306. DOI:10.1177/026635119601100302.
[7] Martin R,Delatte N J. Another look at Hartford civic center coliseum collapse[J]. Journal of Performance of Constructed Facilities, 2001, 15(1): 31-36. DOI:10.1061/(asce)0887-3828(2001)15:1(31).
[8] Makowski Z S. Analysis, design, and construction of braced domes[M]. London: Granada Publishing Ltd, 1984:161-173.
[9] El-Sheikh A. Effect of force limiting devices on behaviour of space trusses[J]. Engineering Structures, 1999, 21(1): 34-44. DOI:10.1016/S0141-0296(97)00136-3.
[10] Bai L J, Zhang Y F. Collapse fragility assessment of steel roof framings with force limiting devices under transient wind loading[J]. Frontiers of Structural and Civil Engineering, 2012, 6(3): 199-209. DOI:10.1007/s11709-012-0168-4.
[11] 贾斌. 轻型铝合金耗能支撑抗震性能及其对空间结构减震效应研究[D]. 上海: 同济大学, 2015.
Jia B. Investigation on seismic performance of light aluminum alloy energy dissipation brace and its impact on spatial structural vibration control[D]. Shanghai: Tongji University, 2015.(in Chinese)
[12] 王秀丽, 周锟, 吴长. 强震作用下带屈曲约束支撑的K型网壳整体结构性能分析[J]. 北京交通大学学报, 2011, 35(1): 61-67. DOI:10.3969/j.issn.1673-0291.2011.01.014.
Wang X L, Zhou K, Wu C. Performance analysis of K-reticulated shell structure with BRBs under severe earthquakes[J]. Journal of Beijing Jiaotong University, 2011, 35(1): 61-67. DOI:10.3969/j.issn.1673-0291.2011.01.014. (in Chinese)
[13] Sridhara B N. Sleeved compression member: US,
5175972[P]. 1993-01-05.
[14] Prasad B K. Experimental investigation of sleeved column[C]//33rd Structures, Structural Dynamics and Materials Conference.Dallas, USA, 1992: 991-999.
[15] 申波. 轴压套管构件静力稳定性能的理论与试验研究[D]. 上海: 同济大学, 2007.
Shen B. Theoretical and experimental investigations on the static stability of sleeved compression members[D]. Shanghai: Tongji University, 2007.(in Chinese)
[16] 胡波. 轴心受压套管构件力学性能精细化分析与试验研究[D]. 杭州: 浙江大学, 2013.
Hu B. Refined analysis on structural behavior and experimental study of axial compressed sleeved member[D]. Hangzhou: Zhejiang University, 2013.(in Chinese)
[17] Shen J, Seker O, Sutchiewcharn N, et al. Cyclic behavior of buckling-controlled braces[J]. Journal of Constructional Steel Research, 2016, 121: 110-125. DOI:10.1016/j.jcsr.2016.01.018.
[18] Chen W F. Structural stability: From theory to practice[J].Engineering Structures, 2000, 22(2): 116-122. DOI:10.1016/S0141-0296(98)00100-X.
[19] 中华人民共和国住房和城乡建设部. JGJ 7—2010 空间网格结构技术规程[S]. 北京: 中国建筑工业出版社, 2010.
[20] 中华人民共和国住房和城乡建设部. GB 50017—2017 钢结构设计标准[S]. 北京: 中国建筑工业出版社, 2017.
[21] Sugimoto H, Chen W F. Inelastic post-buckling behavior of tubular members[J]. Journal of structural engineering, 1985, 111(9):1965-1978. DOI:10.1061/(asce)0733-9445(1985)111:9(1965).
[22] da Silva L S, Simões R, Gervásio H. Design of steel structures: Eurocode 3: Design of steel structures, part 1-1: General rules and rules for buildings[M]. Berlin: Wilhelm Ernst & Sohn, 2016: 192-198.
[23] Zhang C H, Deng C G. Theoretical study of sleeved compression members considering the core protrusion[J]. Structural Engineering and Mechanics, 2018, 66(6): 783-792. DOI:10.12989/sem.2018.66.6.783.

## 相似文献/References:

[1]吴畅,潘钻峰,孟少平.应变硬化水泥基复合材料单轴滞回本构模型[J].东南大学学报(自然科学版),2015,45(5):969.[doi:10.3969/j.issn.1001-0505.2015.05.026]
Wu Chang,Pan Zuanfeng,Meng Shaoping.Uniaxial cyclic constitutive model for strain hardening cementitious composites[J].Journal of Southeast University (Natural Science Edition),2015,45(2):969.[doi:10.3969/j.issn.1001-0505.2015.05.026]