参考文献/References:
[1] 丁建文, 洪振舜, 刘松玉. 疏浚淤泥流动固化土的三轴剪切试验研究[J]. 东南大学学报(自然科学版), 2011, 41(5): 1070-1074. DOI:10.3969/j.issn.1001-0505.2011.05.033.
Ding J W, Hong Z S, Liu S Y. Triaxial shear test of flow-solidified soil of dredged clays[J]. Journal of Southeast University(Natural Science Edition), 2011, 41(5): 1070-1074. DOI:10.3969/j.issn.1001-0505.2011.05.033. (in Chinese)
[2] Tang Y X, Miyazaki Y, Tsuchida T. Practices of reused dredgings by cement treatment.[J].Soils and Foundations, 2001, 41(5): 129-143. DOI:10.3208/sandf.41.5_129.
[3] Kamon M, Jeoung J, Inui T. Alkalinity control properties of the solidified/stabilized sludge by a low alkalinity additive[J]. Soils and Foundations, 2005, 45(1): 87-98. DOI:10.1016/j.soildyn.2004.08.005.
[4] Zhu W, Zhang C L, Chiu A C F. Soil-water transfer mechanism for solidified dredged materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(5): 588-598. DOI:10.1061/(asce)1090-0241(2007)133:5(588).
[5] Siham K, Fabrice B, Edine A N, et al. Marine dredged sediments as new materials resource for road construction[J]. Waste Management, 2008, 28(5): 919-928. DOI:10.1016/j.wasman.2007.03.027.
[6] 丁建文, 吴学春, 李辉, 等. 疏浚淤泥固化土的压缩特性与结构屈服应力[J]. 工程地质学报, 2012, 20(4): 627-632. DOI:10.3969/j.issn.1004-9665.2012.04.021.
Ding J W, Wu X C, Li H, et al. Compression properties and structure yield stress for solidified soil composing of dredged clays[J]. Journal of Engineering Geology, 2012, 20(4): 627-632. DOI:10.3969/j.issn.1004-9665.2012.04.021. (in Chinese)
[7] Ding J W, Feng X S, Xu G Z, et al. Strength properties and microstructural characteristics of stabilized dredged materials at high water contents[J]. Journal of Testing and Evaluation, 2019, 47(3): 20180049. DOI:10.1520/jte20180049.
[8] Burland J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378. DOI:10.1680/geot.1990.40.3.329.
[9] 沈珠江. 软土工程特性和软土地基设计[J]. 岩土工程学报, 1998, 20(1): 100-111.
Shen Z J. Engineering properties of soft soils and design of soft ground[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 100-111.(in Chinese)
[10] 丁建文. 高含水率疏浚淤泥流动固化土的力学性状及微观结构特征研究 [D]. 南京: 东南大学, 2011.
Ding J W. Mechanical properties and microstructure characteristics of solidified dredged clays at high water content [D]. Nanjing: Southeast University, 2011.(in Chinese)
[11] Desai C S, Toth J. Disturbed state constitutive modeling based on stress-strain and nondestructive behavior[J]. International Journal of Solids & Structures, 1996, 33(11): 1619-1650. DOI: 10.1016/0020-7683(95)00115-8.
[12] Desai C S. Mechanics of materials and interfaces: The disturbed state concept [M]. Boca Raton, USA: CRC Press, 2001:77-78.
[13] Liu M D, Carter J P. Virgin compression of structured soils[J].Géotechnique, 1999, 49(1): 43-57. DOI:10.1680/geot.1999.49.1.43.
[14] Liu M D, Carter J P.Modelling the destructuring of soils during virgin compression[J]. Géotechnique, 2000, 50(4): 479-483. DOI:10.1680/geot.2000.50.4.479.
[15] 刘维正, 石名磊, 缪林昌. 基于扰动状态概念的结构性土压缩特性分析[J]. 岩土力学, 2010, 31(11): 3475-3480. DOI:10.3969/j.issn.1000-7598.2010.11.020.
Liu W Z, Shi M L, Miao L C. Analysis of compressibility of structural soils based on disturbed state concept[J]. Rock and Soil Mechanics, 2010, 31(11): 3475-3480. DOI:10.3969/j.issn.1000-7598.2010.11.020. (in Chinese)
[16] Liu M D, Carter J P, Desai C S, et al. Analysis of the compression of structured soils using the disturbed state concept[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(8): 723-735. DOI:10.1002/1096-9853(200007)24:8723::aid-nag92>3.0.co;2-v.
[17] Liu M D, Carter J P, Desai C S. Modeling compression behavior of structured geomaterials[J].International Journal of Geomechanics, 2003, 3(2): 191-204. DOI:10.1061/(asce)1532-3641(2003)3:2(191).
[18] Zeng L L, Hong Z S, Cui Y J. Determining the virgin compression lines of reconstituted clays at different initial water contents[J].Canadian Geotechnical Journal, 2015, 52(9): 1408-1415. DOI:10.1139/cgj-2014-0172.
[19] 刘恩龙, 沈珠江. 结构性土压缩曲线的数学模拟[J]. 岩土力学, 2006, 27(4): 615-620. DOI:10.3969/j.issn.1000-7598.2006.04.022.
Liu E L, Shen Z J. Modeling compression of structured soils[J]. Rock and Soil Mechanics, 2006, 27(4): 615-620. DOI:10.3969/j.issn.1000-7598.2006.04.022. (in Chinese)
[20] Hong Z S, Zeng L L, Cui Y J, et al. Compression behaviour of natural and reconstituted clays[J]. Géotechnique, 2012, 62(4): 291-301. DOI:10.1680/geot.10.p.046.
[21] Qian S, Shi J, Ding J W. Modified Liu-Carter compression model for natural clays with various initial water contents[J]. Advances in Civil Engineering, 2016, 2016: 1-8. DOI:10.1155/2016/1691605.
[22] Tremblay H, Leroueil S, Locat J. Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement[J]. Canadian Geotechnical Journal, 2001, 38(3): 567-579. DOI:10.1139/t00-119.
[23] Chiu C F, Zhu W, Zhang C L. Yielding and shearbehaviour of cement-treated dredged materials[J]. Engineering Geology, 2009, 103(1/2): 1-12. DOI:10.1016/j.enggeo.2008.07.007.
[24] Hight D W, Bond A J, Legge J D.Characterization of the Bothkennaar clay: An overview[J]. Géotechnique, 1992, 42(2): 303-347. DOI:10.1680/geot.1992.42.2.303.
[25] Burland J B, Rampello S, Georgiannou V N,et al. A laboratory study of the strength of four stiff clays[J]. Géotechnique, 1996, 46(3): 491-514. DOI:10.1680/geot.1996.46.3.491.
[26] Wood D M.Soil behaviour and critical state soil mechanics [M]. Cambridge: Cambridge University Press, 1990:139-150.
[27] Butterfield R. A natural compression law for soils(an advance on e-log p′)[J]. Géotechnique, 1979, 29(4): 469-480. DOI:10.1680/geot.1979.29.4.469.
[28] Hong Z S, Yin J, Cui Y J. Compression behaviour of reconstituted soils at high initial water contents[J].Géotechnique, 2010, 60(9): 691-700. DOI:10.1680/geot.09.p.059.