[1]余鹏飞,张小松.不同滑移温度混合工质在双温冷水机组中的性能[J].东南大学学报(自然科学版),2019,49(5):833-839.[doi:10.3969/j.issn.1001-0505.2019.05.004]
 Yu Pengfei,Zhang Xiaosong.Performance of mixed refrigerant with different temperature glides in dual temperature water chillers[J].Journal of Southeast University (Natural Science Edition),2019,49(5):833-839.[doi:10.3969/j.issn.1001-0505.2019.05.004]
点击复制

不同滑移温度混合工质在双温冷水机组中的性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第5期
页码:
833-839
栏目:
能源与动力工程
出版日期:
2019-09-20

文章信息/Info

Title:
Performance of mixed refrigerant with different temperature glides in dual temperature water chillers
作者:
余鹏飞12张小松1
1东南大学能源与环境学院, 南京210096; 2南京工程学院能源与动力工程学院, 南京211167
Author(s):
Yu Pengfei12 Zhang Xiaosong1
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2College of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
关键词:
滑移温度 混合工质 双温冷水机组 性能研究 温焓关系
Keywords:
temperature glide mixed refrigerant dual temperature water chillers performance study temperature enthalpy relationship
分类号:
TU834.9
DOI:
10.3969/j.issn.1001-0505.2019.05.004
摘要:
为了研究混合工质滑移温度对双温冷水机组制冷性能的影响,通过实验测定了R32/R236fa(质量比0.6∶0.4)、R1270/R600(质量比0.7∶0.3)、R32/R600(质量比0.5∶0.5)3种混合工质在冷却水进、出口温度为32、37 ℃,低温冷冻水进、出口温度分别为7、12 ℃和高温冷冻水进、出口温度分别为18、23 ℃时机组的性能参数.并基于混合工质换热时的非线性温焓关系分析了混合工质泡、露点温度及滑移温度对制冷量的影响.研究结果发现:R32/R600低温制冷量最大,压缩机功耗最大;R1270/R600低温制冷量最小,高温制冷量最大,压缩机功耗最小.R32/R236fa低温COP值最大,高温制冷量最小,高温COP值最小.R32/R236fa的低温冷量与高温冷量的比值α值最大,R1270/R600的α值最小.混合工质的泡、露点温度参数对低温换热器制冷量影响较大,滑移温度对高温换热器制冷量影响较大.实验结果可为不同冷负荷、湿负荷条件下的双温冷水机组的设计提供参考.
Abstract:
To study the influence of temperature glide of mixed refrigerant on the performance of dual temperature water chillers, the performance parameters of the chillers with R32/R236fa(0.6∶0.4),R1270/R600(0.7∶0.3)and R32/R600(0.5∶0.5)mass fractions were measured by experiments at the inlet and outlet temperatures of 32,37 ℃, and at the inlet and outlet temperatures of low and high temperature chillers at 7,12 ℃ and 18,23 ℃, respectively.The influence of the bubble point and dew point temperature and glide temperature of mixed refrigerants on refrigeration capacity was analyzed based on the nonlinear change characteristics of temperatures and enthalpy in the heat transfer of mixed refrigerants. The results show that R32/R600 has the largest low-temperature refrigerating capacity and the largest compressor power consumption, and R1270/R600 has the smallest low-temperature refrigerating capacity, the largest high-temperature refrigerating capacity and the smallest compressor power consumption. R32/R236fa has the largest low-temperature COP value,the smallest high-temperature refrigerating capacity and the smallest high-temperature COP value. The α value of R32/R236fa is the largest, and the α value of R1270/R600 is the smallest.The temperature parameters of the bubble and the dew point of the mixed refrigerant have a great influence on the refrigeration capacity of the low-temperature heat exchanger, and the glide temperature has a great influence on the refrigeration capacity of high-temperature heat exchanger. Experimental results can provide a reference for the design of dual temperature water chillers under different cooling and wet load conditions.

参考文献/References:

[1] Kim J H, Cho J M, Kim M S. Cooling performance of several CO2/propane mixtures and glide matching with secondary heat transfer fluid [J]. International Journal of Refrigeration, 2008, 31(5): 800-806. DOI:10.1016/j.ijrefrig.2007.11.009.
[2] Rajapaksha L. Influence of special attributes of zeotropic refrigerant mixtures on design and operation of vapour compression refrigeration and heat pump systems[J]. Energy Conversion and Management, 2007, 48(2): 539-545. DOI:10.1016/j.enconman.2006.06.001.
[3] Liu J, Zhang X S. Performance analysis of a novel double-temperature chilling water unit using large temperature glide zeotropic mixture[J]. Procedia Engineering, 2015, 121: 1222-1229. DOI:10.1016/j.proeng.2015.09.145.
[4] Liu J, She X H, Zhang X S, et al. Experimental study of a novel double temperature chiller based on R32/R236fa[J].Energy Conversion and Management, 2016, 124: 618-626. DOI:10.1016/j.enconman.2016.06.023.
[5] Liu J, She X H, Zhang X S, et al. Experimental and theoretical study on a novel double evaporating temperature chiller applied in THICS using R32/R236fa[J]. International Journal of Refrigeration, 2017, 75: 343-351. DOI:10.1016/j.ijrefrig.2016.08.015.
[6] Yu P F, Zhang X S, Wen X T. Theoretical and experimental study on the heat transfer temperature difference based on the nonlinear temperature enthalpy of the r236fa/r32 mixtures[J]. Procedia Engineering, 2017, 205: 2126-2132. DOI:10.1016/j.proeng.2017.10.136.
[7] Yu P F, Zhang X S. Heat and humidity features and energy saving potential of temperature and humidity independent control air-conditioning system using refrigerant mixture[J]. International Journal of Heat and Technology, 2018, 36(2): 752-760. DOI:10.18280/ijht.360242.
[8] 潘云钢, 刘晓华, 徐稳龙. 温湿度独立控制(THIC)空调系统设计指南[M]. 北京: 中国建筑工业出版社, 2016:4-5.
[9] Zühlsdorf B, Jensen J K, Cignitti S, et al. Analysis of temperature glide matching of heat pumps with zeotropic working fluid mixtures for different temperature glides[J]. Energy, 2018, 153: 650-660. DOI:10.1016/j.energy.2018.04.048.
[10] Domanski P A, Mulroy W J, Didion D A. Glide matching with binary and ternary zeotropic refrigerant mixtures Part 2. A computer simulation[J]. International Journal of Refrigeration, 1994, 17(4): 226-230. DOI:10.1016/0140-7007(94)90038-8.
[11] Kruse H,Kuver M, Quast U, et al.Theoretical and experimental investigations of advantageous refrigerant mixture applications[J].ASHRAE Trans,1985, 9:1383-1418.
[12] Kruse H,Wieschollek F. Concentration shift when using refrigerant mixtures[J].Ashrae Trans,1997, 103:747-755.
[13] 公茂琼, 吴剑峰, 罗二仓. 深冷混合工质节流制冷原理及应用[M]. 北京: 中国科学技术出版社, 2014:49-51.
[14] Mulroy W J, Domanski P A, Didion D A. Glide matching with binary and ternary zeotropic refrigerant mixtures Part 1. An experimental study[J]. International Journal of Refrigeration, 1994, 17(4): 220-225. DOI:10.1016/0140-7007(94)90037-x.
[15] Venkatarathnam G, Mokashi G, Murthy S S. Occurrence of pinch points in condensers and evaporators for zeotropic refrigerant mixturs[J]. International Journal of Refrigeration, 1996, 19(6): 361-368. DOI:10.1016/S0140-7007(96)00023-0.
[16] Venkatarathnam G, Murthy S S. Performance of some zeotropic mixtures as alternative refrigerants to R22 and R502[J]. International Journal of Energy Research, 1998, 22(12): 1065-1073. DOI:10.1002/(sici)1099-114x(19981010)22:121065::aid-er424>3.0.co;2-o.
[17] Bensafi A, Haselden G G. Wide-boiling refrigerant mixtures for energy saving[J]. International Journal of Refrigeration, 1994, 17(7): 469-474. DOI:10.1016/0140-7007(94)90007-8.
[18] UNEP-Ozone Secretariat. Handbook or the montreal protocol on substances that deplete the ozone layer[M].Montreal, Canada:United Nations Environment Programme, 2006: 26-28.
[19] UNFCCC. Kyoto protocol to the united nations framework convention on climate change[M]//International Law Documents. Cambridge,UK:Cambridge University Press,2005: 491-508. DOI:10.1017/ 978131657 7226.067.
[20] Environmental Investigation Agency. Kigali amendment to the montreal protocol: A crucial step in the fight against catastrophic climate change:An experimental study[J]. International Journal of Refrigeration, 2016, 17(4): 220-225.
[21] Zheng N, Song W D, Zhao L. Theoretical and experimental investigations on the changing regularity of the extreme point of the temperature difference between zeotropic mixtures and heat transfer fluid[J]. Energy, 2013, 55: 541-552. DOI:10.1016/j.energy.2013.02.029.
[22] Bobbo S, Fedele L, Camporese R, et al. VLLE measurements and their correlation for the R32 + R600 system[J]. Fluid Phase Equilibria, 2003, 210(1): 45-56. DOI:10.1016/s0378-3812(03)00160-2.
[23] del Col D, Azzolin M, Bortolin S, et al. Experimental results and design procedures for minichannel condensers and evaporators using propylene[J]. International Journal of Refrigeration, 2017, 83: 23-38. DOI:10.1016/j.ijrefrig.2017.07.012.
[24] Hirose M,Ichinose J,Jige D,et al.Condensation heat transfer and pressure drop of azeotropic mixture refrigerant R32/R1270 inside horizontal small-diameter tubes[C]// 24th IIR International Congress of Refrigeration. Yokohama,Japan, 2015: 4414-4421.DOI:10.18462/iir.icr.2015.0702.
[25] Dubey A M, Kumar S, Agrawal G D. Thermodynamic analysis of a transcritical CO2/propylene(R744-R1270)cascade system for cooling and heating applications[J]. Energy Conversion and Management, 2014, 86: 774-783. DOI:10.1016/j.enconman.2014.05.105.
[26] Lemmon E W, Huber M L, Mclinden M O.NIST standard reference database 23,reference fluid thermodynamic and transport properties-REFPROP,version 9.1[EB/OL].( 2013)[2019].https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport.
[27] Kline S J, McClintock F A. Describing uncertainties in single-sample experiments[J]. Journal of Mechanical Engineering, 1953, 75(1): 3-8.

相似文献/References:

[1]陈亚平,吴嘉峰,朱子龙,等.一种新型NG/O2燃气蒸汽混合工质超临界动力循环[J].东南大学学报(自然科学版),2017,47(2):277.[doi:10.3969/j.issn.1001-0505.2017.02.014]
 Chen Yaping,Wu Jiafeng,Zhu Zilong,et al.A novel NG/O2 combustion gas and steam mixture with supercritical power cycle[J].Journal of Southeast University (Natural Science Edition),2017,47(5):277.[doi:10.3969/j.issn.1001-0505.2017.02.014]

备注/Memo

备注/Memo:
收稿日期: 2019-01-30.
作者简介: 余鹏飞(1983—),男,博士生;张小松(联系人),男,博士,教授,博士生导师,rachpe@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51520105009)、国家重点研发计划资助项目(2016YFC0700305).
引用本文: 余鹏飞,张小松.不同滑移温度混合工质在双温冷水机组中的性能[J].东南大学学报(自然科学版),2019,49(5):833-839. DOI:10.3969/j.issn.1001-0505.2019.05.004.
更新日期/Last Update: 2019-09-20