参考文献/References:
[1] Wang J L, Ding G R, Wang H C. HF communications: Past, present, and future[J].China Communications, 2018, 15(9): 1-9. DOI:10.1109/cc.2018.8456447.
[2] 王董礼, 曹鹏, 黄国策, 等. 短波宽带数据通信传输体制性能分析[J]. 通信技术, 2016, 49(7): 812-816. DOI:10.3969/j.issn.1002-0802.2016.07.003.
Wang D L, Cao P, Huang G C, et al. Performance analysis of HF wideband data communication transmission systems[J]. Communications Technology, 2016, 49(7): 812-816. DOI:10.3969/j.issn.1002-0802.2016.07.003. (in Chinese)
[3] Koski E, Furman W N. Applying cognitive radio concepts to HF communications[C]//IET 11th International Conference on Ionospheric Radio Systems and Techniques (IRST 2009). Edinburgh, UK, 2009: 185-190. DOI:10.1049/cp.2009.0060.
[4] Vanninen T, Linden T, Raustia M, et al. Cognitive HF: New perspectives to use the high frequency band[C]// Proceedings of the 9th International Conference on Cognitive Radio Oriented Wireless Networks. Oulu, Finland, 2014: 108-113. DOI:10.4108/icst.crowncom.2014.255810.
[5] 姚富强, 刘忠英, 赵杭生. 短波电磁环境问题研究: 对认知无线电等通信技术再认识[J]. 中国电子科学研究院学报, 2015, 10(2): 156-161, 179. DOI:10.3969/j.issn.1673-5692.2015.02.008.
Yao F Q, Liu Z Y, Zhao H S. Study on the issues of HF electromagnetic environment[J]. Journal of China Academy of Electronics and Information Technology, 2015, 10(2): 156-161, 179. DOI:10.3969/j.issn.1673-5692.2015.02.008. (in Chinese)
[6] Melián-Gutiérrez L, Modi N, Moy C, et al. Upper confidence bound learning approach for real HF measurements[C]//2015 IEEE International Conference on Communication Workshop(ICCW). London, UK, 2015: 381-386. DOI:10.1109/iccw.2015.7247209.
[7] Melián-Gutiérrez L, Modi N, Moy C, et al. Hybrid UCB-HMM: A machine learning strategy for cognitive radio in HF band[J]. IEEE Transactions on Cognitive Communications and Networking, 2015, 1(3): 347-358. DOI:10.1109/tccn.2016.2527021.
[8] 王董礼, 曹鹏, 黄国策, 等. 基于隐马尔可夫模型的短波认知频率选择方法[J]. 计算机应用, 2016, 36(5): 1179-1182, 1187. DOI:10.11772/j.issn.1001-9081.2016.05.1179.
Wang D L, Cao P, Huang G C, et al. High frequency cognitive frequency selection mechanism based on hidden Markov model[J].Journal of Computer Applications, 2016, 36(5): 1179-1182, 1187. DOI:10.11772/j.issn.1001-9081.2016.05.1179. (in Chinese)
[9] Qin Z Q, Wang J L, Chen J, et al. Opportunistic channel access with repetition time diversity and switching cost:A block multi-armed bandit approach[J]. Wireless Networks, 2018, 24(5): 1683-1697. DOI:10.1007/s11276-016-1428-3.
[10] 王董礼, 魏琼, 曹鹏, 等. 短波认知通信中的机器学习策略[J]. 信息通信, 2016(12): 40-42. DOI:10.3969/j.issn.1673-1131.2016.12.017.
Wang D L, Wei Q, Cao P, et al. The machine learning strategies in HF cognitive communication[J]. Information & Communications, 2016(12): 40-42. DOI:10.3969/j.issn.1673-1131.2016.12.017. (in Chinese)
[11] Liu X,Xu Y H, Cheng Y P, et al. A heterogeneous information fusion deep reinforcement learning for intelligent frequency selection of HF communication[J]. China Communications, 2018, 15(9): 73-84. DOI:10.1109/cc.2018.8456453.
[12] Moy C,Nafkha A, Naoues M. Reinforcement learning demonstrator for opportunistic spectrum access on real radio signals[C]//2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Stockholm, Sweden, 2015: 283-284. DOI:10.1109/dyspan.2015.7343919.
[13] 王董礼, 黄国策, 曹鹏, 等. 基于 UCB的短波认知信道选择算法[J]. 铁道学报, 2016, 38(12): 56-61. DOI:10.3969/j.issn.1001-8360.2016.12.009.
Wang D L, Huang G C, Cao P, et al. HF channel selection algorithm based on UCB for cognitive radio application[J]. Journal of the China Railway Society, 2016, 38(12): 56-61. DOI:10.3969/j.issn.1001-8360.2016.12.009. (in Chinese)
[14] 秦志强. 基于认知的短波宽带信道选择关键技术研究[D]. 郑州: 解放军信息工程大学, 2017.
Qin Z Q.Research on key techniques of HF wideband channel selection based on cognitive radio[D]. Zhengzhou: Information Engineering University, 2017.(in Chinese)
[15] Lamy-Bergot C, Chantelouve J B, Lemenager C. Spectrum issues for HF wideband communications [EB/OL].(2012-09-06)[2019-02-21]. https: //docs.wixstatic.com/ugd/cbfc9b_2df4dccd0d 9048dabeeb22a5c90b09d0.pdf.
[16] Bader E. HF XL an alternative 4G solution [EB/OL].(2012-01-25)[2019-02-21]. https://docs.wixstatic.com/ugd/cbfc9b_87ed284d21a34d0 aa8355921a9913ca1.pdf.
[17] Ai J,Abouzeid A A. Opportunistic spectrum access based on a constrained multi-armed bandit formulation[J]. Journal of Communications and Networks, 2009, 11(2): 134-147. DOI:10.1109/jcn.2009.6391388.
[18] 苟俊杰. 基于MAB模型的多信道选择与接入算法研究[D]. 西安: 西安电子科技大学, 2014.
Gou J J. On multi-channel selection and access with multi-armed bandit model[D]. Xi’an: Xidian University, 2014.(in Chinese)
[19] Agrawal R. Sample mean based index policies with O(log n)regret for the multi-armed bandit problem[J]. Advances in Applied Probability, 1995, 27(4): 1054-1078. DOI:10.2307/1427934.
[20] Sutton R S, Barto A G. Reinforcement learning: An introduction [M]. Cambridge: The MIT Press, 1998: 1-27.
[21] Jouini W, Ernst D, Moy C, et al. Multi-armed bandit based policies for cognitive radio’s decision making issues[C]//2009 3rd International Conference on Signals, Circuits and Systems (SCS). Medenine, Tunisia, 2009: 838-843. DOI:10.1109/icscs.2009.5412697.
[22] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 371-377.
[23] Robert C, Moy C, Wang C X. Reinforcement learning approaches and evaluation criteria for opportunistic spectrum access[C]//2014 IEEE International Conference on Communications(ICC). Sydney, Australia, 2014: 1508-1513. DOI:10.1109/icc.2014.6883535.