[1]严战友,靳兆阳,赵晓林,等.移动荷载作用下三跨钢-混组合连续梁桥面铺装动态响应[J].东南大学学报(自然科学版),2019,49(6):1109-1115.[doi:10.3969/j.issn.1001-0505.2019.06.013]
 Yan Zhanyou,Jin Zhaoyang,Zhao Xiaolin,et al.Dynamic response of bridge deck pavement of three-span steel-concrete composite continuous beam under moving loads[J].Journal of Southeast University (Natural Science Edition),2019,49(6):1109-1115.[doi:10.3969/j.issn.1001-0505.2019.06.013]
点击复制

移动荷载作用下三跨钢-混组合连续梁桥面铺装动态响应()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第6期
页码:
1109-1115
栏目:
交通运输工程
出版日期:
2019-11-20

文章信息/Info

Title:
Dynamic response of bridge deck pavement of three-span steel-concrete composite continuous beam under moving loads
作者:
严战友12靳兆阳2赵晓林2陈恩利1王旭蕊2
1石家庄铁道大学交通工程结构力学行为与系统安全国家重点实验室, 石家庄 050043; 2石家庄铁道大学土木工程学院, 石家庄 050043
Author(s):
Yan Zhanyou12 Jin Zhaoyang2 Zhao Xiaolin2 Chen Enli1 Wang Xurui2
1 State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
关键词:
钢-混组合连续梁模型 移动荷载 桥面铺装系统 动态响应
Keywords:
steel-concrete composite continuous beam model moving load bridge deck pavement system dynamic response
分类号:
U441.3
DOI:
10.3969/j.issn.1001-0505.2019.06.013
摘要:
为研究移动荷载作用下三跨钢-混组合连续梁桥面铺装层响应,建立了一种三跨钢-混组合连续梁模型,桥面铺装层采用沥青混合料黏弹属性,移动荷载采用DLOAD与UTRACLOAD子程序实现.结果表明,上面层、下面层、水泥混凝土层及钢板层的最大垂向挠度值比纵梁大17%.由于纵梁与横梁支撑,纵梁的最大垂向挠度比非纵梁小6.6%,横梁最大垂向挠度比非横梁小3.1%.剪力钉与混凝土全接触时的竖向挠度最大,黏结与接触共同作用时的竖向挠度次之,全黏结时的竖向挠度最小.桥面铺装层承受垂向压应力,上、下面层承受横向压应力,钢板层承受横向拉应力,上面层与水泥混凝土层承受纵向压应力,下面层既承受纵向压应力又承受纵向拉应力,钢板层承受纵向拉应力.
Abstract:
To study the dynamic response of the bridge deck pavement system of a three-span steel-concrete composite continuous beam under moving loads, a three-span steel-concrete composite continuous beam model is established. The bridge deck pavement layer uses the viscoelastic properties of the asphalt mixture. The moving load is implemented by the DLOAD and UTRACLOAD subroutines. The results show that the maximum vertical deflection of the upper layer, the lower layer, the cement concrete layer, and the steel layer is 17% larger than that of the longitudinal beam. Due to the support of the longitudinal beam and the beam, the maximum vertical deflection of the longitudinal beam is 6.6% smaller than that of the non-longitudinal beam, and the maximum vertical deflection of the transverse beam is 3.1% smaller than that of the non-transverse beam. The vertical deflection caused by full contact between shear pins and concrete is the maximum; the vertical deflection under the bonding and contact is in the middle; and that of full bonding is the minimum. The deck pavement layer is subjected to the vertical compressive stress. The upper layer and the lower layer are subjected to the transverse compressive stress. The steel sheet layer is subjected to the transverse tensile stress. The upper layer and the cement concrete layer are subjected to the longitudinal compressive stress. The lower layer is subjected to both the longitudinal compressive stress and the longitudinal tensile stress. The steel sheet layer is subjected to the longitudinal tensile stress.

参考文献/References:

[1] Huang W. Integrated design procedure for epoxy asphalt concrete-based wearing surface on long-span orthotropic steel deck bridges[J].Journal of Materials in Civil Engineering, 2016, 28(5): 04015189. DOI:10.1061/(asce)mt.1943-5533.0001470.
[2] Yin C E, Zhang H, Pan Y Q. Cracking mechanism and repair techniques of epoxy asphalt on steel bridge deck pavement[J].Transportation Research Record: Journal of the Transportation Research Board, 2016, 2550(1): 123-130. DOI:10.3141/2550-16.
[3] Steiner J,Laier R, Würfel T, et al. Repairing fatigue damage on an orthotropic steel deck road bridge[J]. Proceedings of the Institution of Civil Engineers-Engineering History and Heritage, 2017, 170(3): 143-151. DOI:10.1680/jenhh.16.00021.
[4] 侯忠明, 夏禾, 张彦玲, 等. 简谐荷载作用下组合梁动滑移响应分析[J]. 振动与冲击, 2016, 35(2): 18-23, 30. DOI:10.13465/j.cnki.jvs.2016.02.004.
Hou Z M, Xia H, Zhang Y L, et al. Analytical dynamic slip solution for steel-concrete composite beams under harmonic load[J]. Journal of Vibration and Shock, 2016, 35(2): 18-23, 30. DOI:10.13465/j.cnki.jvs.2016.02.004. (in Chinese)
[5] Huang W, Guo W Q, Wei Y. Thermal effect on rheological properties of epoxy asphalt mixture and stress prediction for bridge deck paving[J].Journal of Materials in Civil Engineering, 2019, 31(10): 04019222. DOI:10.1061/(asce)mt.1943-5533.0002861.
[6] Zheng D, Qian Z D, Liu D X, et al. Thermal field characteristics of reinforced concrete box girder during high-temperature asphalt pavement paving[J].Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672(41): 56-64. DOI:10.1177/0361198118768529.
[7] Zheng D, Qian Z D, Liu Y, et al. Prediction and sensitivity analysis of long-term skid resistance of epoxy asphalt mixture based on GA-BP neural network[J].Construction and Building Materials, 2018, 158: 614-623. DOI:10.1016/j.conbuildmat.2017.10.056.
[8] Zhen X X, Zhang Z J, Rao R, et al. Analysis of viscoelastic mechanical response of asphalt mixture pavement on steel deck under imperfect contact conditions[J].Journal of Testing and Evaluation, 2019, 47(3): 20170777. DOI:10.1520/jte20170777.
[9] Ma H, Zhang Z G, Ding B, et al. Investigation on the adhesive characteristics of engineered cementitious composites(ECC)to steel bridge deck[J].Construction and Building Materials, 2018, 191: 679-691. DOI:10.1016/j.conbuildmat.2018.10.056.
[10] Kim T W, Baek J, Lee H J, et al. Effect of pavement design parameters on the behaviour of orthotropic steel bridge deck pavements under traffic loading[J]. International Journal of Pavement Engineering, 2014, 15(5): 471-482. DOI:10.1080/10298436.2013.839790.
[11] Han F, Wang H, Dan D H. Dynamic response of a bridge deck pavement[J].Proceedings of the Institution of Civil Engineers—Transport, 2019, 172(4): 221-232. DOI:10.1680/jtran.17.00009.
[12] Liu Y, Xi Z H, Cai J, et al. Laboratory investigation of the properties of epoxy asphalt rubber(EAR)[J]. Materials and Structures,2017, 50(5).DOI:10.1617/s11527-017-1089-4.
[13] Fang H,Zou F, Liu W Q, et al. Mechanical performance of concrete pavement reinforced by CFRP grids for bridge deck applications[J]. Composites Part B: Engineering, 2017, 110: 315-335. DOI:10.1016/j.compositesb.2016.11.015.
[14] 李慧乐, 夏禾. 基于车桥耦合随机振动分析的钢桥疲劳可靠度评估[J]. 工程力学, 2017, 34(2): 69-77. DOI:10.6052/j.issn.1000-4750.2015.04.0334.
Li H L, Xia H. Fatigue reliability evaluation of steel bridges based on coupling random vibration analysis of train and bridge[J]. Engineering Mechanics, 2017, 34(2): 69-77. DOI:10.6052/j.issn.1000-4750.2015.04.0334. (in Chinese)
[15] 钱振东, 刘云, 郑彬. 大跨度公铁两用斜拉桥公路桥面铺装层受力特点分析[J]. 土木工程学报, 2011, 44(6): 138-142. DOI:10.15951/j.tmgcxb.2011.06.006.
Qian Z D, Liu Y, Zheng B. Mechanical analysis of steel deck pavement on long span combined road and railway cable-stayed bridges[J]. China Civil Engineering Journal, 2011, 44(6): 138-142. DOI:10.15951/j.tmgcxb.2011.06.006. (in Chinese)
[16] Yuan Y, Wu C, Jiang X. Experimental study on the fatigue behavior of the orthotropic steel deck rehabilitated by UHPC overlay[J].Journal of Constructional Steel Research, 2019, 157: 1-9. DOI:10.1016/j.jcsr.2019.02.010.
[17] 吕悦晶, 应保胜, 邹丽琼, 等. 随机荷载作用下沥青路面应力应变分析[J]. 公路工程, 2018, 43(1): 94-101. DOI:10.3969/j.issn.1674-0610.2018.01.018.
Lü Y J, Ying B S, Zou L Q, et al. The stress and strain analysis in asphalt pavement under random loading[J]. Highway Engineering, 2018, 43(1): 94-101. DOI:10.3969/j.issn.1674-0610.2018.01.018. (in Chinese)
[18] 丁幼亮, 卞宇, 赵瀚玮, 等. 公铁两用斜拉桥竖向挠度的长期监测与分析[J]. 铁道科学与工程学报, 2017, 14(2): 271-277. DOI:10.3969/j.issn.1672-7029.2017.02.010.
Ding Y L, Bian Y, Zhao H W, et al. Long-term monitoring and analysis of vertical deflections of a highway-railway cable-stayed bridge under operation conditions[J]. Journal of Railway Science and Engineering, 2017, 14(2): 271-277. DOI:10.3969/j.issn.1672-7029.2017.02.010. (in Chinese)
[19] Jia X Y, Huang B S, Chen S J, et al. Comparative investigation into field performance of steel bridge deck asphalt overlay systems[J].KSCE Journal of Civil Engineering, 2016, 20(7): 2755-2764. DOI:10.1007/s12205-016-0259-1.

相似文献/References:

[1]邓学钧,黄晓明.粘弹性半空间地基上板在动荷下的挠度计算[J].东南大学学报(自然科学版),1988,18(6):66.[doi:10.3969/j.issn.1001-0505.1988.06.009]
 Deng Xuejun Huang Xiaoming (Department of Civil Engineering).The Displacement Formulation ot Plate Based on Viscoelastic Foundation Under Moving Load[J].Journal of Southeast University (Natural Science Edition),1988,18(6):66.[doi:10.3969/j.issn.1001-0505.1988.06.009]

备注/Memo

备注/Memo:
收稿日期: 2019-04-30.
作者简介: 严战友(1972—),男,博士生,副教授,yanzhanyou@163.com.
基金项目: 国家自然科学基金资助项目(111172183)、中央引导地方科技发展专项资助项目(18242219G).
引用本文: 严战友,靳兆阳,赵晓林,等.移动荷载作用下三跨钢-混组合连续梁桥面铺装动态响应[J].东南大学学报(自然科学版),2019,49(6):1109-1115. DOI:10.3969/j.issn.1001-0505.2019.06.013.
更新日期/Last Update: 2019-11-20