[1]朱劲松,孟庆领,祁海东,等.大型沉井基础侧壁摩阻力分布特性[J].东南大学学报(自然科学版),2019,49(6):1136-1143.[doi:10.3969/j.issn.1001-0505.2019.06.017]
 Zhu Jinsong,Meng Qingling,Qi Haidong,et al.Distribution characteristics of side wall friction of large open caisson foundation[J].Journal of Southeast University (Natural Science Edition),2019,49(6):1136-1143.[doi:10.3969/j.issn.1001-0505.2019.06.017]
点击复制

大型沉井基础侧壁摩阻力分布特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第6期
页码:
1136-1143
栏目:
土木工程
出版日期:
2019-11-20

文章信息/Info

Title:
Distribution characteristics of side wall friction of large open caisson foundation
作者:
朱劲松12孟庆领1祁海东3黄迪1
1天津大学建筑工程学院, 天津 300072; 2天津大学滨海土木工程结构与安全教育部重点实验室, 天津 300072; 3怀来县市政建设管理处, 怀来 075400
Author(s):
Zhu Jinsong12 Meng Qingling1 Qi Haidong3 Huang Di1
1 School of Civil Engineering, Tianjin University, Tianjin 300072, China
2 Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University, Tianjin 300072, China
3 Municipal Construction Administration Department of Huailai, Huailai 075400, China
关键词:
沉井基础 侧壁摩阻力 分布特性 现场实测
Keywords:
open caisson foundation side wall friction distribution characteristics field measurement
分类号:
TU473.2
DOI:
10.3969/j.issn.1001-0505.2019.06.017
摘要:
为系统研究大型沉井基础下沉过程中侧摩阻力、阻力峰值位置分布、松弛高度与下沉系数的变化规律,以在建河北省怀来县官厅水库悬索桥北锚碇沉井基础为研究对象,现场测量锚碇下沉过程中的侧壁摩阻力分布,分析获得松弛高度与下沉系数变化,并将其与双折线模型、三折线模型、直线和双曲线组合模型结果进行对比.结果表明:随着入土深度的增加,侧壁摩阻力分布形式逐渐由直线形转化为先增大后减小的近似抛物线形;实测摩阻力峰值和所在位置均与入土深度二次相关,且增加速率逐渐增大,松弛区高度也随入土深度的增加逐渐增大且增加速率逐渐减小;锚碇下沉过程中总侧壁摩阻力逐渐增加,下沉系数逐渐减少并趋于稳定,总侧壁摩阻力与其他3种模型结果相差不超过20%,下沉系数相差不超过10%;入土深度较大时,双折线模型计算得到的钢板应力最小,下沉到位大锅底时为14.39 MPa,三折线模型计算得到的钢板应力最大,下沉到位大锅底时为17.76 MPa.
Abstract:
To systematically study the variation rules of the side friction, the peak resistance location, the relaxation height and the subsidence coefficient during large caisson foundation sinking, the distribution of the side wall friction during the settlement of anchorage was measured in situ, and the change of the relaxation height and the settlement coefficient was analyzed by taking the north anchorage caisson foundation of the suspension bridge at Guanting Reservoir in Huailai, Hebei Province as example. The analysis results were compared with those of the double-fold line model, the triple-fold line model, and the straight line and hyperbola combination model. The results show that with the increase of the buried depth, the distribution of the side friction gradually transforms from a linear shape to an approximately parabolic shape which increases first and then decreases. The measured values of the peak side friction and the corresponding location show a parabolic correlation with the buried depth, and the increase rate increases gradually. The height of the relaxation zone increases with the buried depth, but the increase rate decreases gradually. During anchorage sinking, the total side wall friction increases gradually. The sinking coefficient decreases and tends to be stable. Compared with the results of other three models, the difference of the total side friction is no more than 20%, and the difference of the sinking coefficient is no more than 10%. When the buried depth is large, the stress of the steel plate computed by the double-fold line model is the minimum and the value is 14.39 MPa when it sinks to the bottom of the large pot. The stress of the steel plate obtained by the triple-fold line model is the maximum and the value is 17.76 MPa when it sinks to the bottom of the large pot.

参考文献/References:

[1] 顾晓鲁. 地基与基础[M]. 3版. 北京: 中国建筑工业出版社, 2003:1-10.
[2] Chen G B. Parameters calculation for the large open caisson based on quaternion[J].KSCE Journal of Civil Engineering, 2015, 19(5): 1492-1497. DOI:10.1007/s12205-015-0734-0.
[3] Du J Q, Du S J, Shen S L, et al. Numerical investigation of the undrained compression and pull-out capacity of suction foundations in clay[J].Polish Maritime Research, 2015, 22(s1): 126-135. DOI:10.1515/pomr-2015-0044.
[4] Yang X J, Chen L, Zhou W, et al. Retraction notice: Resistance analysis of open caisson towing on water in the construction of the large scale bridge[J].The Open Construction & Building Technology Journal, 2016, 10(1): 180. DOI:10.2174/1874836801610010180.
[5] Iskander M, El-Gharbawy S, Olson R. Performance of suction caissons in sand and clay[J]. Canadian Geotechnical Journal, 2002, 39(3): 576-584. DOI:10.1139/t02-030.
[6] Ahn J, Lee H, Kim Y T. Finite element analysis of the holding capacity of shallow suction caisson anchors[J]. Marine Georesources & Geotechnology, 2015, 33(1): 33-44. DOI:10.1080/1064119x.2013.778377.
[7] Li D Y, Zhang Y K, Feng L Y, et al. Capacity of modified suction caissons in marine sand under static horizontal loading[J].Ocean Engineering, 2015, 102: 1-16. DOI:10.1016/j.oceaneng.2015.04.033.
[8] Sassa S, Takahashi H, Morikawa Y, et al. Effect of overflow and seepage coupling on tsunami-induced instability of caisson breakwaters[J]. Coastal Engineering, 2016, 117: 157-165. DOI:10.1016/j.coastaleng.2016.08.004.
[9] Rendón-Conde C, Heredia-Zavoni E. Reliability analysis of suction caissons for moored structures under parameter uncertainties[J]. Structural Safety, 2016, 60: 102-116. DOI:10.1016/j.strusafe.2016.02.004.
[10] Guner S, Carrière J. Analysis and strengthening of caisson foundations for uplift loads[J]. Canadian Journal of Civil Engineering, 2016, 43(5): 411-419. DOI:10.1139/cjce-2015-0350.
[11] Ho C. Settlement performance of large diameter friction caissons inbouldery clay[C]//International Deep Foundations Congress. Orlando, Florida, USA, 2002: 525-541. DOI:10.1061/40601(256)38.
[12] 郝志强. 大型沉井结构下沉过程中的受力特性研究[D]. 南京:东南大学, 2010.
  Hao Z Q. Research on the mechanical properties of sinking process of large caisson structure[D]. Nanjing:Southeast University, 2010.(in Chinese)
[13] 陈晓平, 茜平一, 张志勇. 沉井基础下沉阻力分布特征研究[J]. 岩土工程学报, 2005, 27(2): 148-152. DOI:10.3321/j.issn:1000-4548.2005.02.003.
Chen X P, Qian P Y, Zhang Z Y. Study on penetration resistance distribution characteristic of sunk shaft foundation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 148-152. DOI:10.3321/j.issn:1000-4548.2005.02.003. (in Chinese)
[14] Ouyang X Y, Zhao W G, Li J, et al. Calculation mode of side friction for large open caisson[J]. Journal of Southeast University(English Edition), 2015, 31(1): 130-136. DOI:10.3969/j.issn.1003-7985.2015.01.022.
[15] 周和祥, 马建林, 李军堂, 等. 深大沉井下沉阻力的现场监测[J]. 公路交通科技, 2019, 36(7): 81-89.
  Zhou H X, Ma J L, Li J T, et al. Field monitoring of sinking resistance of large and deep caisson[J]. Journal of Highway and Transportation Research and Development, 2019, 36(7): 81-89.(in Chinese)
[16] 王建, 刘杨, 张煜. 沉井侧壁摩阻力室内试验研究[J]. 岩土力学, 2013, 34(3): 659-666. DOI:10.16285/j.rsm.2013.03.039
Wang J, Liu Y, Zhang Y. Model test on sidewall friction of open caisson[J].Rock and Soil Mechanics, 2013, 34(3): 659-666. DOI:10.16285/j.rsm.2013.03.039(in Chinese)
[17] Alampalli S, Peddibotla V. Model Tests on Caissons[C] // Proceedings of the 2015 International Forum on Architecture Science and Civil Engineering. Beijing, China, 2015: 193-212.
[18] 周和祥, 马建林, 张凯, 等. 沉井侧壁摩阻力分布特性试验研究[J]. 桥梁建设, 2018, 48(5): 27-32. DOI:10.3969/j.issn.1003-4722.2018.05.006.
Zhou H X, Ma J L, Zhang K, et al. Experimental study of distribution characteristics of frictional resistance on sidewall of open caisson[J]. Bridge Construction, 2018, 48(5): 27-32. DOI:10.3969/j.issn.1003-4722.2018.05.006. (in Chinese)
[19] 梁穑稼, 徐伟, 徐赞云. 沉井下沉时土压力和侧壁摩阻力分析[J]. 同济大学学报(自然科学版), 2014, 42(12): 1826-1832. DOI:10.11908/j.issn.0253-374x.2014.12.007.
Liang S J, Xu W, Xu Z Y. Earth pressure and frictional resistance analysis on open caisson during sinking[J]. Journal of Tongji University(Natural Science), 2014, 42(12): 1826-1832. DOI:10.11908/j.issn.0253-374x.2014.12.007. (in Chinese)
[20] 刘青. 沉井结构侧壁土压力分布研究[D]. 西安: 西安建筑科技大学, 2010.
  Liu Q. Study for the lateral earth pressure of open caisson structure[D]. Xi’an: Xi’an University of Architecture and Technology, 2010.(in Chinese)
[21] Ukritchon B, Keawsawasvong S. Undrained pullout capacity of cylindrical suction caissons by finite element limit analysis[J]. Computers and Geotechnics, 2016, 80: 301-311. DOI:10.1016/j.compgeo.2016.08.019.
[22] Nielsen S D. Finite element modeling of the tensile capacity of suction caissons incohesionless soil[J]. Applied Ocean Research, 2019, 90: 101866. DOI:10.1016/j.apor.2019.101866.
[23] 徐涛, 李杨, 吴民武, 等. 向家坝水电站围堰基础沉井施工下沉阻力监测[J]. 长江科学院院报, 2009, 26(8): 92-94. DOI:10.3969/j.issn.1001-5485.2009.08.022.
Xu T, Li Y, Wu M W, et al. Resistance monitoring in construction of caisson foundation of cofferdam of xiangjiaba hydropower station[J]. Journal of Yangtze River Scientific Research Institute, 2009, 26(8): 92-94. DOI:10.3969/j.issn.1001-5485.2009.08.022. (in Chinese)
[24] 李昕睿. 考虑位移效应刚性挡土墙被动土压力计算方法研究[D]. 杭州: 浙江大学, 2010.
  Li X R. Calculation methods of passive earth pressure against rigid retaining wall considering displacement effects[D]. Hangzhou: Zhejiang University, 2010.(in Chinese)
[25] 吕亚茹, 刘汉龙, 王明洋, 等. 异形桩桩土荷载传递机理理论分析[J]. 岩土工程学报, 2015, 37(S1): 212-217.
  Lü Y R, Liu H L, Wang M Y, et al. Theoretical analyses of load transfer mechanism for special pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 212-217.(in Chinese)
[26] 中华人民共和国建设部. GB 50069—2002 给水排水工程构筑物结构设计规范[S]. 北京: 中国建筑工业出版社, 2002.
[27] 黄昌乾, 李国强, 潘启辉. 基床系数取值方法相关问题分析[J]. 建筑结构, 2010, 40(S1): 298-302. DOI:10.19701/j.jzjg.2010.s1.090.
Huang C Q, Li G Q, Pan Q H. Analysis on obtaining methods about the coefficient of subgrade reaction[J]. Building Structure, 2010, 40(S1): 298-302. DOI:10.19701/j.jzjg.2010.s1.090. (in Chinese)
[28] 莫海鸿, 杨小平. 基础工程[M]. 3版. 北京: 中国建筑工业出版社, 2014:116-169.

备注/Memo

备注/Memo:
收稿日期: 2019-06-20.
作者简介: 朱劲松(1975— ),男,博士,教授,博士生导师,jszhu@tju.edu.cn.
基金项目: 天津市科技支撑计划重点资助项目(16YFZCSF00460)、天津市自然科学基金资助项目(16JCZDJC40300).
引用本文: 朱劲松,孟庆领,祁海东,等.大型沉井基础侧壁摩阻力分布特性[J].东南大学学报(自然科学版),2019,49(6):1136-1143. DOI:10.3969/j.issn.1001-0505.2019.06.017.
更新日期/Last Update: 2019-11-20