[1]常洪雷,金祖权.无碳化影响时干湿交替下水泥基材料中氯离子传输行为[J].东南大学学报(自然科学版),2019,49(6):1153-1161.[doi:10.3969/j.issn.1001-0505.2019.06.019]
 Chang Honglei,Jin Zuquan.Chloride transport behavior in cementitious-based materials under cyclic drying-wetting condition without influence of carbonation[J].Journal of Southeast University (Natural Science Edition),2019,49(6):1153-1161.[doi:10.3969/j.issn.1001-0505.2019.06.019]
点击复制

无碳化影响时干湿交替下水泥基材料中氯离子传输行为()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第6期
页码:
1153-1161
栏目:
材料科学与工程
出版日期:
2019-11-20

文章信息/Info

Title:
Chloride transport behavior in cementitious-based materials under cyclic drying-wetting condition without influence of carbonation
作者:
常洪雷1金祖权2
1山东大学齐鲁交通学院, 济南 250002; 2青岛理工大学土木工程学院, 青岛 266033
Author(s):
Chang Honglei1 Jin Zuquan2
1School of Qilu Transportation, Shandong University, Jinan 250002, China
2School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
关键词:
水泥基材料 N2环境 干湿交替 氯离子 浓度峰 模型
Keywords:
cementitious-based materials N2 environment cyclic drying-wetting chloride concentration peak model
分类号:
TU528.1
DOI:
10.3969/j.issn.1001-0505.2019.06.019
摘要:
为了研究不存在碳化影响时干湿交替下氯离子的传输规律及分布特征,在N2环境下进行干湿交替以彻底排除干燥过程中碳化的影响;建立了仅考虑扩散和毛细吸附-水分蒸发的氯离子传输数值模型.结果表明,在实验测得的与计算得到的氯离子分布曲线中都出现了氯离子浓度峰,氯离子含量及浓度峰出现的位置均较为相近,且氯离子浓度峰出现的深度在0~2 mm内.此外,暴露时间、水灰比、温度及外部盐溶液浓度的增大以及环境湿度的减小都会导致氯离子浓度峰增强,且浓度峰出现的位置向暴露面更深处迁移.实验结果与计算结果的一致性不仅显示了无碳化影响时干湿交替后氯离子的分布规律及特征,而且反映出了毛细吸附-水分蒸发是导致氯离子浓度峰形成的根本原因.
Abstract:
To ascertain the chloride distribution feature and law in specimens under cyclic drying-wetting conditions to be devoid of carbonation effect, a cyclic drying-wetting experiment was carried out in N2 environment to completely eliminate the influence of carbonation during drying; and a numerical model of chloride transport was established based on diffusion and capillary adsorption-moisture evaporation. The results show that a chloride concentration peak appears both in the experimental and calculated profiles, and the peak chloride content and its location of experimental and calculated results are very close. Moreover, the peaks appear at the depth of 0 to 2 mm. In addition, both the increase of exposure time, water-cement ratio, temperature, and concentration of external salt solution and the decrease of ambient humidity will cause the peak of the chloride concentration to be more significant and the position of the peak to migrate deeper from the exposed surface. The consistence of experimental and calculated results presents the distribution feature and law of chloride in specimens without the impact of carbonation, and verifies the vital role of capillary adsorption-moisture evaporation on the formation of chloride concentration peak.

参考文献/References:

[1] Yu Z W, Chen Y, Liu P, et al. Accelerated simulation of chloride ingress into concrete under drying-wetting alternation condition chloride environment[J]. Construction and Building Materials, 2015, 93: 205-213. DOI:10.1016/j.conbuildmat.2015.05.090.
[2] Arya C, Vassie P, Bioubakhsh S. Modelling chloride penetration in concrete subjected to cyclic wetting and drying[J]. Magazine of Concrete Research, 2014, 66(7): 364-376. DOI:10.1680/macr.13.00255.
[3] Castro P, de Rincon O T, Pazini E J. Interpretation of chloride profiles from concrete exposed to tropical marine environments[J]. Cement and Concrete Research, 2001, 31(4): 529-537. DOI:10.1016/s0008-8846(01)00453-7.
[4] Meira G R, Andrade C, Padaratz I J, et al. Chloride penetration into concrete structures in the marine atmosphere zone—Relationship between deposition of chlorides on the wet candle and chlorides accumulated into concrete[J]. Cement and Concrete Composites, 2007, 29(9): 667-676. DOI:10.1016/j.cemconcomp.2007.05.009.
[5] Polder R B, Peelen W H A. Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity[J]. Cement and Concrete Composites, 2002, 24(5): 427-435. DOI:10.1016/s0958-9465(01)00074-9.
[6] Chang H L, Mu S, Xie D Q, et al. Influence of pore structure and moisture distribution on chloride “maximum phenomenon” in surface layer of specimens exposed to cyclic drying-wetting condition[J]. Construction and Building Materials, 2017, 131: 16-30. DOI:10.1016/j.conbuildmat.2016.11.071.
[7] Chang H L, Mu S, Feng P. Influence of carbonation on “maximum phenomenon” in surface layer of specimens subjected to cyclic drying-wetting condition[J]. Cement and Concrete Research, 2018, 103: 95-109. DOI:10.1016/j.cemconres.2017.10.005.
[8] Andrade C, Climent M A, de Vera G. Procedure for calculating the chloride diffusion coefficient and surface concentration from a profile having a maximum beyond the concrete surface[J]. Materials and Structures, 2015, 48(4): 863-869. DOI:10.1617/s11527-015-0543-4.
[9] Ann K Y, Ahn J H, Ryou J S. The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures[J]. Construction and Building Materials, 2009, 23(1): 239-245. DOI:10.1016/j.conbuildmat.2007.12.014.
[10] Andrade C, Díez J M, Alonso C. Mathematical modeling of a concrete surface “skin effect” on diffusion in chloride contaminated media[J]. Advanced Cement Based Materials, 1997, 6(2): 39-44. DOI:10.1016/s1065-7355(97)00002-3.
[11] Thomas M D A, Matthews J D. Performance of pfa concrete in a marine environment—10-year results[J]. Cement and Concrete Composites, 2004, 26(1): 5-20. DOI:10.1016/s0958-9465(02)00117-8.
[12] Jaegermann C. Effect of water-cement ratio and curing on chloride penetration into concrete exposed to mediterranean sea climate[J]. ACI Materials Journal, 1990, 87(4): 333-339. DOI:10.14359/2039.
[13] Costa A, Appleton J. Chloride penetration into concrete in marine environment: Part Ⅰ: Main parameters affecting chloride penetration[J]. Materials and Structures, 1999, 32(4): 252-259. DOI:10.1007/bf02479594.
[14] Chang H L, Feng P, Liu J, et al. Chloride maximum phenomenon near the surface of cement paste induced by moisture evaporation and carbonation[J]. Materials and Structures, 2018, 51(5): 132. DOI:10.1617/s11527-018-1260-6.
[15] Ye H L, Jin N G, Jin X Y, et al. Model of chloride penetration into cracked concrete subject to drying-wetting cycles[J]. Construction and Building Materials, 2012, 36: 259-269. DOI:10.1016/j.conbuildmat.2012.05.027.
[16] Ye H L, Jin X Y, Fu C Q, et al. Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation[J]. Construction and Building Materials, 2016, 112: 457-463. DOI:10.1016/j.conbuildmat.2016.02.194.
[17] Hassan Z. Binding of external chloride by cement pastes[D]. Canada:University of Toronto, 2001.
[18] Goñi S, Guerrero A. Accelerated carbonation of Friedel’s salt in calcium aluminate cement paste[J]. Cement and Concrete Research, 2003, 33(1): 21-26.
[19] Lin G, Liu Y H, Xiang Z H. Numerical modeling for predicting service life of reinforced concrete structures exposed to chloride environments[J]. Cement and Concrete Composites, 2010, 32(8): 571-579. DOI:10.1016/j.cemconcomp.2010.07.012.
[20] O?bolt J, Or?anic’, Balabanic’G. Modeling influence of hysteretic moisture behavior on distribution of chlorides in concrete[J]. Cement and Concrete Composites, 2016, 67: 73-84. DOI:10.1016/j.cemconcomp.2016.01.004.
[21] 李春秋.干湿交替下表层混凝土中水分与离子传输过程研究[D].北京:清华大学,2009.
  Li C Q. Study on water and ionic transport processes in cover concrete under drying-wetting cycles[D]. Beijing: Tsinghua University, 2009.(in Chinese)
[22] 张奕.氯离子在混凝土中的输运机理研究[D].杭州:浙江大学,2008.
  Zhang Y. Mechanics of chloride ions transportation in concrete[D]. Hangzhou: Zhejiang University, 2008.(in Chinese)
[23] Chang H L, Mu S. Detecting water soluble chloride distribution of paste in a high-precision way[J]. Journal of Visualized Experiments, 2017(129): e56268.DOI:10.3791/56268.
[24] 王昌义,胡力平.JTJ 270—98水运工程混凝土试验规程[S].北京:人民交通出版社, 1988.
[25] Plusquellec G, Geiker M R, Lindgård J, et al. Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison[J]. Cement and Concrete Research, 2017, 96: 13-26. DOI:10.1016/j.cemconres.2017.03.002.
[26] Chang H L. Chloride binding capacity of pastes influenced by carbonation under three conditions[J]. Cement and Concrete Composites, 2017, 84: 1-9. DOI:10.1016/j.cemconcomp.2017.08.011.
[27] Kwiatkowski J, Woloszyn M, Roux J J. Modelling of hysteresis influence on mass transfer in building materials[J]. Building and Environment, 2009, 44(3): 633-642. DOI:10.1016/j.buildenv.2008.05.006.
[28] Bazant Z P, Kaplan M F. Concrete at high temperatures[M]. London: Long Group Limited, 1996:78-84.
[29] Ba?ant Z P, Najjar L J. Nonlinear water diffusion in nonsaturated concrete[J]. Matériaux Et Constructions, 1972, 5(1): 3-20. DOI:10.1007/bf02479073.
[30] Ochs F, Heidemann W, Müller-Steinhagen H. Effective thermal conductivity of moistened insulation materials as a function of temperature[J]. International Journal of Heat and Mass Transfer, 2008, 51(3/4): 539-552. DOI:10.1016/j.ijheatmasstransfer.2007.05.005.
[31] Pedersen C R. Combined heat and moisture transfer in building constructions[D].Copenhagen, Denmark: Technical University of Denmark, 1990.
[32] Hansen K K. Sorption isotherms—Acatalogue[D]. Copenhagen,Denmark: Technical University of Denmark, 1986.
[33] Bastidas-Arteaga E, Chateauneuf A, Sánchez-SilvaM, et al. A comprehensive probabilistic model of chloride ingress in unsaturated concrete[J]. Engineering Structures, 2011, 33(3): 720-730. DOI:10.1016/j.engstruct.2010.11.008.
[34] Martín-Pérez B, Pantazopoulou S J, Thomas M D A. Numerical solution of mass transport equations in concrete structures[J]. Computers& Structures, 2001, 79(13): 1251-1264. DOI:10.1016/s0045-7949(01)00018-9.
[35] Thomas M D A, Bamforth P B. Modelling chloride diffusion in concrete[J]. Cement and Concrete Research, 1999, 29(4): 487-495. DOI:10.1016/s0008-8846(98)00192-6.

相似文献/References:

[1]高礼雄,杜雪刚,孔丽娟.石灰石粉对水泥基材料抗碳硫硅钙石侵蚀破坏的定量分析[J].东南大学学报(自然科学版),2012,42(3):483.[doi:10.3969/j.issn.1001-0505.2012.03.017]
 Gao Lixiong,Du Xuegang,Kong Lijuan.Quantitative analysis of effect of limestone powder on resistance of thaumasite attack to cement-based materials[J].Journal of Southeast University (Natural Science Edition),2012,42(6):483.[doi:10.3969/j.issn.1001-0505.2012.03.017]
[2]肖海军,孙伟,蒋金洋,等.水泥基材料微结构的反复压汞法表征[J].东南大学学报(自然科学版),2013,43(2):371.[doi:10.3969/j.issn.1001-0505.2013.02.027]
 Xiao Haijun,Sun Wei,Jiang Jinyang,et al.Characterization of microstructure of cement-based materials by multi-cycle-MIP method[J].Journal of Southeast University (Natural Science Edition),2013,43(6):371.[doi:10.3969/j.issn.1001-0505.2013.02.027]
[3]周伟玲,孙伟,陈翠翠,等.应用纳米压痕技术表征水泥基材料微观力学性能[J].东南大学学报(自然科学版),2011,41(2):370.[doi:10.3969/j.issn.1001-0505.2011.02.030]
 Zhou Weiling,Sun Wei,Chen Cuicui,et al.Characterization for micro mechanical properties of cementitious materials by nanoindentation technique[J].Journal of Southeast University (Natural Science Edition),2011,41(6):370.[doi:10.3969/j.issn.1001-0505.2011.02.030]
[4]张亚梅,余保英.掺超细矿粉水泥基材料早龄期水化产物及孔结构特性[J].东南大学学报(自然科学版),2011,41(4):815.[doi:10.3969/j.issn.1001-0505.2011.04.030]
 Zhang Yamei,Yu Baoying.Characteristics of hydration products and pore structure in cement-based material with ultra fine slag at early ages[J].Journal of Southeast University (Natural Science Edition),2011,41(6):815.[doi:10.3969/j.issn.1001-0505.2011.04.030]
[5]王育江,刘加平,田倩,等.水泥基材料的塑性抗拉强度[J].东南大学学报(自然科学版),2014,44(2):369.[doi:10.3969/j.issn.1001-0505.2014.02.025]
 Wang Yujiang,Liu Jiaping,Tian Qian,et al.Tensile strength of cement based materials at plastic stage[J].Journal of Southeast University (Natural Science Edition),2014,44(6):369.[doi:10.3969/j.issn.1001-0505.2014.02.025]
[6]刘巧玲,孙伟,孙波,等.碳纳米管水性分散体的制备及其对水泥砂浆强度的影响[J].东南大学学报(自然科学版),2014,44(3):662.[doi:10.3969/j.issn.1001-0505.2014.03.037]
 Liu Qiaoling,Sun Wei,et al.Preparation of carbon nanotubes solution and its effects on mechanical properties of cement mortar[J].Journal of Southeast University (Natural Science Edition),2014,44(6):662.[doi:10.3969/j.issn.1001-0505.2014.03.037]
[7]占华刚,潘钢华,王宇东.加速碳化条件下混凝土界面过渡区微结构[J].东南大学学报(自然科学版),2015,45(3):569.[doi:10.3969/j.issn.1001-0505.2015.03.027]
 Zhan Huagang,Pan Ganghua,Wang Yudong.Microstructure of interface transition zone in concrete under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2015,45(6):569.[doi:10.3969/j.issn.1001-0505.2015.03.027]
[8]沈奇真,潘钢华,占华刚,等.加速碳化条件下界面过渡区的纳米力学性能[J].东南大学学报(自然科学版),2016,46(1):146.[doi:10.3969/j.issn.1001-0505.2016.01.024]
 Shen Qizhen,Pan Ganghua,Zhan Huagang,et al.Nanomechanical properties of interfacial transition zone under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2016,46(6):146.[doi:10.3969/j.issn.1001-0505.2016.01.024]

备注/Memo

备注/Memo:
收稿日期: 2019-06-02.
作者简介: 常洪雷(1988—),男,博士,助理研究员;金祖权(联系人),男,博士,教授,jinzuquan@126.com.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2015CB655100)、国家自然科学基金资助项目(51908327)、山东省自然科学基金资助项目(ZR2019QEE017)、山东大学基本科研业务费专项资金资助项目(31560078614117).
引用本文: 常洪雷,金祖权.无碳化影响时干湿交替下水泥基材料中氯离子传输行为[J].东南大学学报(自然科学版),2019,49(6):1153-1161. DOI:10.3969/j.issn.1001-0505.2019.06.019.
更新日期/Last Update: 2019-11-20