[1]吴林玉,缪林昌,孙潇昊,等.基于火山石负载细菌的混凝土裂缝修复分析[J].东南大学学报(自然科学版),2019,49(6):1171-1177.[doi:10.3969/j.issn.1001-0505.2019.06.021]
 Wu Linyu,Miao Linchang,Sun Xiaohao,et al.Concrete crack repair analysis based on pelelith immobilized bacteria[J].Journal of Southeast University (Natural Science Edition),2019,49(6):1171-1177.[doi:10.3969/j.issn.1001-0505.2019.06.021]
点击复制

基于火山石负载细菌的混凝土裂缝修复分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第6期
页码:
1171-1177
栏目:
材料科学与工程
出版日期:
2019-11-20

文章信息/Info

Title:
Concrete crack repair analysis based on pelelith immobilized bacteria
作者:
吴林玉1缪林昌1孙潇昊1陈润发1王呈呈2
1东南大学岩土工程研究所, 南京 210096; 2上海市政工程设计研究总院(集团)有限公司, 上海 200092
Author(s):
Wu Linyu1 Miao Linchang1 Sun Xiaohao1 Chen Runfa1 Wang Chengcheng2
1Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China
2Shanghai Municipal Engineering Design Institute(Group)Co., Ltd., Shanghai 200092, China
关键词:
细菌 混凝土 裂缝修复 负载 火山石
Keywords:
bacteria concrete crack repair immobilization pelelith
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2019.06.021
摘要:
为保护细菌免受混凝土内部强碱环境侵害,将火山石作为细菌载体进行混凝土裂缝修复研究.在研究负载细菌活性影响因素的基础上,采用无侧限抗压强度及超声波等测试方法,对比研究了火山石负载细菌方法和常规方法修复混凝土裂缝的效果.结果表明,选用优化负载方法,负载比为1∶4,负载时间为24 h时,负载效果最好.负载细菌在添加营养物质的情况下尿素分解浓度明显高于未加营养物质的情况,在pH=12的强碱环境下仍具有较高活性,48 h尿素分解浓度可达15.52 g/L.相同修复期内采用常规方法修复的混凝土试件表面仍可见清晰裂缝,而火山石负载细菌方法则将裂缝完全封堵,且修复后混凝土试件具有较高的抗压强度恢复率,裂缝宽度为1.5和2.0 mm的试件抗压强度恢复率分别为19.68%和15.51%.
Abstract:
To protect bacteria from strong alkali environment inside concrete, pelelith was used as the bacteria carrier to repair concrete cracks. Based on the study of the influencing factors of the activity of immobilized bacteria, the pelelith immobilized bacteria method and the conventional method for repairing concrete cracks were compared by unconfined compressive strength tests and ultrasonic tests. The results show that the immobilization effect is the best by the optimized immobilization method with the immobilization ratio of 1∶4 and the immobilization time of 24 h. With the addition of nutrients, the decomposition concentration of urea of immobilized bacteria is significantly higher than that without added nutrients. The immobilized bacteria has high activity in the strong alkali environment with pH of 12, and the decomposition concentration of urea can reach 15.52 g/L for 48 h. In the same repair period, clear cracks can still be distinguished on the surface of concrete specimens repaired by the conventional method, while cracks are completely sealed by the method based on pelelith immobilized bacteria and the repaired concrete specimens have a high recovery rate of the compressive strength. The recovery rates of the compressive strength of specimens with the crack width of 1.5 and 2.0 mm are 19.68% and 15.51%, respectively.

参考文献/References:

[1] Sun X H, Miao L C, Wu L Y, et al. The method of repairing microcracks based on microbiologically induced calcium carbonate precipitation[EB/OL].(2018-12-21)[2019-03-10].https://www.icevirtuallibrary.com/doi/pdf/10.1680/jadcr.18.00121.
[2] Suleiman A R, Nelson A J,Nehdi M L. Visualization and quantification of crack self-healing in cement-based materials incorporating different minerals[J]. Cement and Concrete Composites, 2019, 103:49-58. DOI:10.1016/j.cemconcomp.2019.04.026.
[3] DeJong J T, Mortensen B M, Martinez B C, et al. Bio-mediated soil improvement[J].Ecological Engineering, 2010, 36(2):197-210. DOI:10.1016/j.ecoleng.2008.12.029.
[4] Nguyen T H,Ghorbel E, Fares H, et al. Bacterial self-healing of concrete and durability assessment[J]. Cement and Concrete Composites, 2019, 104:103340. DOI:10.1016/j.cemconcomp.2019.103340.
[5] Bang S S, Galinat J K, Ramakrishnan V. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii[J]. Enzyme and Microbial Technology, 2001, 28(4/5):404-409. DOI:10.1016/s0141-0229(00)00348-3.
[6] Bang S S, Lippert J J, Yerra U, et al. Microbial calcite, a bio-based smart nanomaterial in concrete remediation[J]. International Journal of Smart and Nano Materials, 2010, 1(1):28-39. DOI:10.1080/19475411003593451.
[7] van Tittelboom K, de Belie N, de Muynck W, et al. Use of Bacteria to repair cracks in concrete[J]. Cement and Concrete Research, 2010, 40(1):157-166. DOI:10.1016/j.cemconres.2009.08.025.
[8] 袁晓露, 胡为民, 刘冬梅. 微生物水泥净浆的自修复性能研究[J]. 混凝土, 2015(6):114-116, 120. DOI:10.3969/j.issn.1002-3550.2015.06.030.
Yuan X L, Hu W M, Liu D M. Effect of magnesium on properties of microbial cement paste[J]. Concrete, 2015(6):114-116, 120. DOI:10.3969/j.issn.1002-3550.2015.06.030. (in Chinese)
[9] 徐晶, 王彬彬. 陶粒负载微生物的混凝土开裂自修复研究[J]. 材料导报, 2017, 31(14):127-131. DOI:10.11896/j.issn.1005-023X.2017.014.027.
Xu J, Wang B B. Research on self-healing of concrete cracks by ceramsite immobilized microorganism[J]. Materials Review, 2017, 31(14):127-131. DOI:10.11896/j.issn.1005-023X.2017.014.027. (in Chinese)
[10] Khaliq W, Ehsan M B. Crack healing in concrete using various bio influenced self-healing techniques[J].Construction and Building Materials, 2016, 102:349-357. DOI:10.1016/j.conbuildmat.2015.11.006.
[11] Zhang J G, Liu Y Z, Feng T, et al. Immobilizing Bacteria in expanded perlite for the crack self-healing in concrete[J].Construction and Building Materials, 2017, 148:610-617. DOI:10.1016/j.conbuildmat.2017.05.021.
[12] Wang J Y, van Tittelboom K, de Belie N, et al. Use of silica gel or polyurethane immobilized Bacteria for self-healing concrete[J]. Construction and Building Materials, 2012, 26(1):532-540. DOI:10.1016/j.conbuildmat.2011.06.054.
[13] Wang J Y,Soens H, Verstraete W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research, 2014, 56:139-152. DOI:10.1016/j.cemconres.2013.11.009.
[14] 张华俊, 王妙, 石敏球, 等. 火山石固载微生物对河涌流动水体营养盐去除效果研究[J]. 广东化工, 2017, 44(13):214-215.
  Zhang H J, Wang M, Shi M Q, et al. The nutrients removal efficiency by pelelith-immobilized microbe in treatment of flowing water in urban rivers[J]. Guangdong Chemical Industry, 2017, 44(13):214-215.(in Chinese)
[15] 王华, 刘长发, 秦传新. 用火山石载体生物膜和角叉菜去除水中氮和磷的效果[J]. 大连水产学院学报, 2007, 22(6):421-425. DOI:10.3969/j.issn.1000-9957.2007.06.005.
Wang H, Liu C F, Qin C X. Nitrogen and phosphate removal in aquaculture wastewater by a novel filter media vesuvianite and macroalga Chondrus ocellatus[J]. Journal of Dalian Fisheries University, 2007, 22(6):421-425. DOI:10.3969/j.issn.1000-9957.2007.06.005. (in Chinese)
[16] Wang J Y, de Belie N,Verstraete W. Diatomaceous earth as a protective vehicle for Bacteria applied for self-healing concrete[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(4):567-577. DOI:10.1007/s10295-011-1037-1.
[17] Whiffin V S. Microbial CaCO3 precipitation for the production of biocement.[D]. Perth, Australia:Murdoch University, 2004.
[18] 潘庆峰.混凝土裂缝的微生物自修复机理及自修复剂研究[D].南京:东南大学, 2012.
  Pan Q F. Study on microorganism self-repairing mechanism and self-repairing agent of concrete cracks[D]. Nanjing:Southeast University,2012.(in Chinese)
[19] Sun X H, Miao L C, Tong T Z, et al. Study of the effect of temperature on microbially induced carbonate precipitation[J]. Acta Geotechnica, 2019, 14(3):627-638. DOI:10.1007/s11440-018-0758-y.

相似文献/References:

[1]王毅,叶见曙.温度梯度对混凝土曲线箱梁影响的计算方法[J].东南大学学报(自然科学版),2005,35(6):924.[doi:10.3969/j.issn.1001-0505.2005.06.021]
 Wang Yi,Ye Jianshu.Computing method of effect of thermal gradient on concrete curved box-girders[J].Journal of Southeast University (Natural Science Edition),2005,35(6):924.[doi:10.3969/j.issn.1001-0505.2005.06.021]
[2]孙巍巍,孟少平.后张无粘结预应力装配混凝土联肢抗震墙的连梁组合体抗侧性能[J].东南大学学报(自然科学版),2007,37(2):190.[doi:10.3969/j.issn.1001-0505.2007.02.003]
 Sun Weiwei,Meng Shaoping.Lateral load behavior of unbonded post-tensioned coupled concrete wall subassemblages[J].Journal of Southeast University (Natural Science Edition),2007,37(6):190.[doi:10.3969/j.issn.1001-0505.2007.02.003]
[3]潘建伍,曹双寅,何小元,等.散斑干涉在纤维与混凝土粘结面位移场测量中的应用[J].东南大学学报(自然科学版),2003,33(3):347.[doi:10.3969/j.issn.1001-0505.2003.03.025]
 Pan Jianwu,Cao Shuangyin,He Xiaoyuan,et al.Application of ESPI in displacement measurement of bond area between FRP and concrete[J].Journal of Southeast University (Natural Science Edition),2003,33(6):347.[doi:10.3969/j.issn.1001-0505.2003.03.025]
[4]符冠华,杨毅文,耿小平,等.双预应力混凝土梁桥的研究[J].东南大学学报(自然科学版),2001,31(3):128.[doi:10.3969/j.issn.1001-0505.2001.03.030]
 Fu Guanhua,Yang Yiwen,Geng Xiaoping,et al.Research on Bi-Prestressing System of Simply Supported Concrete Girder Bridge[J].Journal of Southeast University (Natural Science Edition),2001,31(6):128.[doi:10.3969/j.issn.1001-0505.2001.03.030]
[5]关宇刚,孙伟,缪昌文.冻融疲劳作用下高强混凝土劣化特征点的分析[J].东南大学学报(自然科学版),2001,31(6):25.[doi:10.3969/j.issn.1001-0505.2001.06.007]
 Guan Yugang,Sun Wei,Miao Changwen.Analysis of the Characteristic Degradation Points for High Strength Concrete Subjected to Freeze-Thaw Cycles[J].Journal of Southeast University (Natural Science Edition),2001,31(6):25.[doi:10.3969/j.issn.1001-0505.2001.06.007]
[6]顾文钧,俞建荣.水泥混凝土与沥青混凝土复合式路面温度梯度分析[J].东南大学学报(自然科学版),1997,27(3):23.[doi:10.3969/j.issn.1001-0505.1997.03.005]
 Thermal Gradient Analysis of Cement Concrete and Asphalt Concrete Composite Pavement Gu Wenjun Yu Jianrong[J].Journal of Southeast University (Natural Science Edition),1997,27(6):23.[doi:10.3969/j.issn.1001-0505.1997.03.005]
[7]聂彦锋,钱春香.基于RST的混凝土硫酸盐侵蚀评价指标分析及损伤程度预测[J].东南大学学报(自然科学版),2013,43(3):594.[doi:10.3969/j.issn.1001-0505.2013.03.027]
 Nie Yanfeng,Qian Chunxiang.Evaluation indices analysis and sulfate attack degree prediction of concrete based on RST[J].Journal of Southeast University (Natural Science Edition),2013,43(6):594.[doi:10.3969/j.issn.1001-0505.2013.03.027]
[8]吴佰建,李兆霞,郭力.模拟混凝土破坏过程的微裂纹模型及其应用[J].东南大学学报(自然科学版),2013,43(5):1034.[doi:10.3969/j.issn.1001-0505.2013.05.022]
 Wu Baijian,Li Zhaoxia,Guo Li.Micro-crack model for concrete rupture modeling and its applications[J].Journal of Southeast University (Natural Science Edition),2013,43(6):1034.[doi:10.3969/j.issn.1001-0505.2013.05.022]
[9]张云升,孙伟,陈树东,等.粉煤灰混凝土2D和3D碳化试验[J].东南大学学报(自然科学版),2006,36(4):562.[doi:10.3969/j.issn.1001-0505.2006.04.014]
 Zhang Yunsheng,Sun Wei,Chen Shudong,et al.2D and 3D carbonation of fly ash concrete[J].Journal of Southeast University (Natural Science Edition),2006,36(6):562.[doi:10.3969/j.issn.1001-0505.2006.04.014]
[10]詹炳根,孙伟,沙建芳,等.碱硅酸反应作用下混凝土中氯离子扩散规律和结合能力[J].东南大学学报(自然科学版),2006,36(6):956.[doi:10.3969/j.issn.1001-0505.2006.06.017]
 Zhan Binggen,Sun Wei,Sha Jianfang,et al.Chloride diffusion and binding capacity in concrete suffered from ASR[J].Journal of Southeast University (Natural Science Edition),2006,36(6):956.[doi:10.3969/j.issn.1001-0505.2006.06.017]

备注/Memo

备注/Memo:
收稿日期: 2019-06-16.
作者简介: 吴林玉(1994—),女,博士生;缪林昌(联系人),男,博士,教授,博士生导师,lc.miao@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51578147).
引用本文: 吴林玉,缪林昌,孙潇昊,等.基于火山石负载细菌的混凝土裂缝修复分析[J].东南大学学报(自然科学版),2019,49(6):1171-1177. DOI:10.3969/j.issn.1001-0505.2019.06.021.
更新日期/Last Update: 2019-11-20