[1]张志红,韩林,田改垒.饱和土体热-水-力-化全耦合一维溶质运移模型[J].东南大学学报(自然科学版),2019,49(6):1178-1186.[doi:10.3969/j.issn.1001-0505.2019.06.022]
 Zhang Zhihong,Han Lin,Tian Gailei.One-dimensional transport model for solute with thermo-hydro-mechanical-chemical soupling in saturated soil[J].Journal of Southeast University (Natural Science Edition),2019,49(6):1178-1186.[doi:10.3969/j.issn.1001-0505.2019.06.022]
点击复制

饱和土体热-水-力-化全耦合一维溶质运移模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
49
期数:
2019年第6期
页码:
1178-1186
栏目:
土木工程
出版日期:
2019-11-20

文章信息/Info

Title:
One-dimensional transport model for solute with thermo-hydro-mechanical-chemical soupling in saturated soil
作者:
张志红韩林田改垒
北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124
Author(s):
Zhang Zhihong Han Lin Tian Gailei
The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
关键词:
热-水-力-化耦合 黏土垫层 溶质运移 热渗透
Keywords:
thermo-hydro-mechanical-chemical coupling clay liner solute transport thermo-osmosis
分类号:
TU443
DOI:
10.3969/j.issn.1001-0505.2019.06.022
摘要:
基于孔隙流体质量守恒、能量守恒和溶质质量守恒,综合考虑力学固结、热固结与化学渗透固结对土体结构的影响,并结合黏土颗粒对溶质吸附、半透膜效应作用及耦合流、耦合扩散效应,建立了单一溶质在饱和土体中运移的热-水-力-化全耦合分析模型,采用COMSOL软件重点模拟了渗滤液环境温度对溶质运移行为的影响.数值结果表明,温度会显著影响溶质浓度随时空的分布,热扩散作用加速溶质运移进程,热渗透与热固结机制对溶质运移具有阻滞作用,模拟时间为50年时黏土垫层上下边界温差70 K比无温差工况溶质运移深度减缓87.6%.所建全耦合模型能够为填埋场防渗隔污屏障优化设计及服役性能评估提供理论参考.
Abstract:
A transport model with thermo-hydro-mechanical-chemical coupling in single solute in saturated soil was proposed, based on the principle of mass conservation of pore fluid, energy conservation and mass conservation of solute considering the influences of mechanical consolidation, heat consolidation and chemical-osmosis consolidation on the soil structure together. Meanwhile, the adsorption of clay particles, semi-membrane behavior, coupled flow and diffusion were all included. The influence of the temperature on the solute transport process was simulated by software COMSOL. The numerical results show that the temperature has an important effect on the concentration distribution of solute with time and soil depth, the thermal diffusion accelerates the solute transport and the process of thermos-osmosis, and heat consolidation retards the solute transport. When the transport time reaches 50 years, the transport depth of the solute under the temperature difference 70 K between upper and lower boundaries of clay liner slows down by 87.6% compared with that without the temperature difference. The fully coupled model can provide a theoretical support for the barrier design of the landfill and the evaluation of service life.

参考文献/References:

[1] Barbour S L, Fredlund D G. Mechanisms of osmotic flow and volume change in clay soils[J]. Canadian Geotechnical Journal, 1989, 26(4): 551-562. DOI:10.1139/t89-068.
[2] Kaczmarek M, Hueckel T. Chemo-mechanical consolidation of clays: Analytical solutions for a linearized one-dimensional problem[J]. Transport in Porous Media, 1998, 32(1): 49-74. DOI:10.1023/A:1006530405361.
[3] van Impe P O, Pasqualini E. Consolidation, contaminant transport and chemico-osmotic effects in liner materials[D]. Ancona,Italy:University of Ancona, 2002.
[4] Peters G P, Smith D W. The influence of advective transport on coupled chemical and mechanical consolidation of clays[J]. Mechanics of Materials, 2004, 36(5/6): 467-486. DOI:10.1016/s0167-6636(03)00072-3.
[5] 白冰, 赵成刚. 温度对粘性土介质力学特性的影响[J]. 岩土力学, 2003, 24(4): 533-537. DOI:10.3969/j.issn.1000-7598.2003.04.009.
Bai B, Zhao C G. Temperature effects on mechanical characteristics of clay soils[J]. Rock and Soil Mechanics, 2003, 24(4): 533-537. DOI:10.3969/j.issn.1000-7598.2003.04.009. (in Chinese)
[6] Cui Y J, Ye W M. Modeling of thermo-mechanical volume change behavior of saturated clays[J]. Chinese Journal of Rock Mechanics & Engineering, 2005, 24(21):3903-3910.
[7] Abuel-Naga H M, Bergado D T, Ramana G V, et al. Experimental evaluation of engineering behavior of soft bangkok clay under elevated temperature[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(7): 902-910. DOI:10.1061/(asce)1090-0241(2006)132:7(902).
[8] Abuel-Naga H M,Bergado D T,Bouazza A,et al.Volume change behaviour of saturated clays under drained heating conditions: Experimental results and constitutive modeling[J]. Canadian Geotechnical Journal, 2007, 44(8): 942-956. DOI:10.1139/t07-031.
[9] 吴瑞潜. 饱和土一维热固结解析理论研究[D]. 杭州: 浙江大学, 2008.
  Wu R Q. Analytical study on one-dimensional thermal consolidation theory of saturated soil[D]. Hangzhou: Zhejiang University, 2008.(in Chinese)
[10] Delage P, Sultan N, Cui Y J. On the thermal consolidation of Boom clay[J]. Canadian Geotechnical Journal, 2000, 37(2): 343-354. DOI:10.1139/cgj-37-2-343.
[11] Bai B, Su Z Q. Thermal responses of saturated silty clay during repeated heating-cooling processes[J]. Transport in Porous Media, 2012, 93(1): 1-11. DOI:10.1007/s11242-012-9939-6.
[12] Thomas H R, He Y. A coupled heat-moisture transfer theory for deformable unsaturated soil and its algorithmic implementation[J]. International Journal for Numerical Methods in Engineering, 1997, 40(18): 3421-3441. DOI:10.1002/(sici)1097-0207(19970930)40:183421::aid-nme220>3.0.co;2-c.
[13] Zhou Y, Rajapakse R K N D, Graham J. A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration[J]. International Journal of Solids and Structures, 1998, 35(34/35): 4659-4683. DOI:10.1016/s0020-7683(98)00089-4.
[14] Soler J M. The effect of coupled transport phenomena in the Opalinus clay and implications for radionuclide transport[J]. Journal of Contaminant Hydrology, 2001, 53(1/2): 63-84.
[15] 刘泽佳, 李锡夔, 武文华. 多孔介质中化学-热-水力-力学耦合过程本构模型和数值模拟[J]. 岩土工程学报, 2004, 26(6): 797-803. DOI:10.3321/j.issn:1000-4548.2004.06.014.
Liu Z J, Li X K, Wu W H. A constitutive model and numerical simulation for coupled chemo-thermo-hydro-mechanical process in porous media[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 797-803. DOI:10.3321/j.issn:1000-4548.2004.06.014. (in Chinese)
[16] Wu W H, Li X K, Charlier R, et al. A thermo-hydro-mechanical constitutive model and its numerical modelling for unsaturated soils[J]. Computers and Geotechnics, 2004, 31(2): 155-167. DOI:10.1016/j.compgeo.2004.02.004.
[17] 刘泽佳,李锡夔.非饱和多孔介质中热-渗流-力学耦合的混合元法[J].力学学报, 2006, 38(2): 170-175. DOI:10.3321/j.issn:0459-1879.2006.02.004.
Liu Z J, Li X K. Mixed finite element method for coupled thermo-hydro-mechanical analysis in unsaturated porous media[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2): 170-175. DOI:10.3321/j.issn:0459-1879.2006.02.004. (in Chinese)
[18] 杨辉, 葛伟亚, 董志高. 垃圾填埋场温度-渗流耦合数学模型的研究[J]. 安全与环境工程, 2008, 15(4): 63-66. DOI:10.3969/j.issn.1671-1556.2008.04.017.
Yang H, Ge W Y, Dong Z G. Study of mathematical model on coupling between temperature and seepage field in landfill site[J]. Safety and Environmental Engineering, 2008, 15(4): 63-66. DOI:10.3969/j.issn.1671-1556.2008.04.017. (in Chinese)
[19] Fran�E7;ois B, Laloui L, Laurent C. Thermo-hydro-mechanical simulation of ATLAS in situ large scale test in Boom Clay[J]. Computers and Geotechnics, 2009, 36(4): 626-640. DOI:10.1016/j.compgeo.2008.09.004.
[20] Sánchez M, Gens A, Olivella S. Effect of thermo-coupled processes on the behaviour of a clay barrier submitted to heating and hydration[J]. Anais Da Academia Brasileira De Ciências, 2010, 82(1): 153-168. DOI:10.1590/s0001-37652010000100013.
[21] Vardon P J, Cleall P J, Thomas H R, et al. Three-dimensional field-scale coupled thermo-hydro-mechanical modeling: parallel computing implementation[J]. International Journal of Geomechanics, 2011, 11(2): 90-98. DOI:10.1061/(asce)gm.1943-5622.0000019.
[22] Azad F M, El-Zein A, Rowe R K, et al. Modelling of thermally induced desiccation of geosynthetic clay liners in double composite liner systems[J]. Geotextiles and Geomembranes, 2012, 34: 28-38. DOI:10.1016/j.geotexmem.2012.02.012.
[23] Thomas H R, Sedighi M, Vardon P J. Diffusive reactive transport of multicomponent chemicals under coupled thermal, hydraulic, chemical and mechanical conditions[J]. Geotechnical and Geological Engineering, 2012, 30(4): 841-857. DOI:10.1007/s10706-012-9502-9.
[24] Chen X H, Pao W, Li X K. Coupled thermo-hydro-mechanical model with consideration of thermal-osmosis based on modified mixture theory[J]. International Journal of Engineering Science, 2013, 64: 1-13. DOI:10.1016/j.ijengsci.2012.12.005.
[25] Hong P Y, Pereira J M, Tang A M, et al. On some advanced thermo-mechanical models for saturated clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(17): 2952-2971. DOI:10.1002/nag.2170.
[26] 蔡国庆, 赵成刚, 田辉. 高放废物地质处置库中非饱和缓冲层的热-水-力耦合数值模拟[J]. 岩土工程学报, 2013, 35(S1): 1-8.
  Cai G Q, Zhao C G, Tian H. Numerical simulation of coupled thermo-hydro-mechanical behavior for engineered barriers in high-level radioactive waste disposal[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 1-8.(in Chinese)
[27] 陈卫忠, 龚哲, 于洪丹, 等. 黏土岩温度-渗流-应力耦合特性试验与本构模型研究进展[J]. 岩土力学, 2015, 36(5): 1217-1238. DOI:10.16285/j.rsm.2015.05.001.
Chen W Z, Gong Z, Yu H D, et al. Review of thermo-hydro-mechanical coupled tests and constitutive models of clays[J]. Rock and Soil Mechanics, 2015, 36(5): 1217-1238. DOI:10.16285/j.rsm.2015.05.001. (in Chinese)
[28] 蔡国庆, 郭艳鑫, 李舰, 等. 热-水-力耦合作用下非饱和土变形特性的弹塑性模拟[J]. 岩土力学, 2017, 38(4): 1060-1068. DOI:10.16285/j.rsm.2017.04.017.
Cai G Q, Guo Y X, Li J, et al. Elastoplastic modeling of volume change behaviour of unsaturated soils under thermo-hydro-mechanical coupling conditions[J]. Rock and Soil Mechanics, 2017, 38(4): 1060-1068. DOI:10.16285/j.rsm.2017.04.017. (in Chinese)
[29] Zagor�9A;ak R, Sedighi M, Thomas H R. Effects of thermo-osmosis on hydraulic behavior of saturated clays[J]. International Journal of Geomechanics, 2017, 17(3): 04016068. DOI:10.1061/(asce)gm.1943-5622.0000742.
[30] 张志红, 师玉敏, 朱敏. 黏土垫层水力-力学-化学耦合模型研究[J]. 岩土工程学报, 2016, 38(7): 1283-1290. DOI:10.11779/CJGE201607016.
Zhang Z H, Shi Y M, Zhu M. Coupled hydro-mechanical-chemical model for clay liner[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1283-1290. DOI:10.11779/CJGE201607016. (in Chinese)
[31] Jing L R, Feng X T. Numerical modeling for coupled thermo-hydro-mechanical and chemical processes(THMC)of geological media: International and Chinese experiences[J]. 岩石力学与工程学报, 2003, 22(10): 1704-1715.
[32] 武文华, 李锡夔. 热-水力-力学-传质耦合过程模型及工程土障数值模拟[J]. 岩土工程学报, 2003, 25(2): 188-192. DOI:10.3321/j.issn:1000-4548.2003.02.014.
Wu W H, Li X K. Coupled thermo-hygro-mechanical model including mass transfer and numerical simulation for engineering clay barrier[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 188-192. DOI:10.3321/j.issn:1000-4548.2003.02.014. (in Chinese)
[33] 刘泽佳, 李锡夔. 非饱和多孔介质中混合元法的化学-热-渗流-力学耦合的本构模拟[J]. 计算力学学报, 2007, 24(4): 397-402. DOI:10.3969/j.issn.1007-4708.2007.04.003.
Liu Z J, Li X K. The coupled chemo-thermo-hydro-mechanical constitutive modeling for the mixed finite element of unsaturated porous media[J]. Chinese Journal of Computational Mechanics, 2007, 24(4): 397-402. DOI:10.3969/j.issn.1007-4708.2007.04.003. (in Chinese)
[34] 冯忠, 徐文杰, 詹良通, 等. 城市固废的热固液气化生耦合模型[J]. 东南大学学报(自然科学版), 2016, 46(z1): 1-6. DOI:10.3969/j.issn.1001-0505.2016.S1.001.
Feng Z, Xu W J, Zhan L T, et al. THMCB coupled modeling in municipal solid waste[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(z1): 1-6. DOI:10.3969/j.issn.1001-0505.2016.S1.001. (in Chinese)
[35] 陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46. DOI:10.11779/CJGE201401001.
Chen Y M. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. DOI:10.11779/CJGE201401001. (in Chinese)
[36] Liu Z, Yu X. Thermo-hydro-mechanical-chemical simulation of methane hydrate dissociation in porous media[J]. Geotechnical and Geological Engineering, 2013, 31(6): 1681-1691. DOI:10.1007/s10706-013-9696-5.
[37] Seetharam S C, Thomas H R, Cleall P J. Coupled thermo/hydro/chemical/mechanical model for unsaturated soils: Numerical algorithm[J]. International Journal for Numerical Methods in Engineering, 2007, 70(12): 1480-1511. DOI:10.1002/nme.1934.
[38] Cleall P J, Seetharam S C, Thomas H R. Inclusion of some aspects of chemical behavior of unsaturated soil in thermo/hydro/chemical/mechanical models. Ⅰ: model development[J]. Journal of Engineering Mechanics, 2007, 133(3): 338-347. DOI:10.1061/(asce)0733-9399(2007)133:3(338).
[39] Gens A, Guimar�E4;es L D N, Olivella S, et al. Modelling thermo-hydro-mechano-chemical interactions for nuclear waste disposal[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(2): 97-102. DOI:10.3724/sp.j.1235.2010.00097.
[40] Zheng L G, Samper J, Montenegro L, et al. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite[J]. Journal of Hydrology, 2010, 386(1/2/3/4): 80-94. DOI:10.1016/j.jhydrol.2010.03.009.
[41] Cui L, Fall M. A coupled thermo-hydro-mechanical-chemical model for underground cemented tailings backfill[J]. Tunnelling and Underground Space Technology, 2015, 50: 396-414. DOI:10.1016/j.tust.2015.08.014.
[42] Bernier F, Lemy F, de Cannière P, et al. Implications of safety requirements for the treatment of THMC processes in geological disposal systems for radioactive waste[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(3): 428-434. DOI:10.1016/j.jrmge.2017.04.001.
[43] Hart R D, St John C M. Formulation of a fully-coupled thermal-mechanical-fluid flow model for non-linear geologic systems[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(3): 213-224. DOI:10.1016/0148-9062(86)90967-8.
[44] 刘建国, 王洪涛, 聂永丰. 多孔介质中溶质有效扩散系数预测的分形模型[J]. 水科学进展, 2004, 15(4): 458-462. DOI:10.3321/j.issn:1001-6791.2004.04.010.
Liu J G, Wang H T, Nie Y F. Fractal model for predicting effective diffusion coefficient of solute in porous media[J]. Advances in Water Science, 2004, 15(4): 458-462. DOI:10.3321/j.issn:1001-6791.2004.04.010. (in Chinese)
[45] Do N Y, Lee S R. Temperature effect on migration of Zn and Cd through natural clay[J]. Environmental Monitoring and Assessment, 2006, 118(1/2/3): 267-291. DOI:10.1007/s10661-006-1501-y.
[46] 陈云敏, 谢海建, 张春华. 污染物击穿防污屏障与地下水土污染防控研究进展[J]. 水利水电科技进展, 2016, 36(1): 1-10. DOI:10.3880/j.issn.1006-7647.2016.01.001.
Chen Y M, Xie H J, Zhang C H. Review on penetration of barriers by contaminants and technologies for groundwater and soil contamination control[J]. Advances in Science and Technology of Water Resources, 2016, 36(1): 1-10. DOI:10.3880/j.issn.1006-7647.2016.01.001. (in Chinese)
[47] 何俊, 阮晓晨, 胡晓瑾, 等. 温度和模拟渗滤液作用下黏土的渗透性能研究[J]. 水文地质工程地质, 2017, 44(1): 116-122. DOI:10.16030/j.cnki.issn.1000-3665.2017.01.18.
He J, Ruan X C, Hu X J, et al. Effects of temperature and analog leachate on hydraulic conductivity of compacted clay[J].Hydrogeology and Engineering Geology, 2017, 44(1): 116-122. DOI:10.16030/j.cnki.issn.1000-3665.2017.01.18. (in Chinese)
[48] 何俊, 胡晓瑾, 颜兴, 等. 黏土渗透性温度效应试验[J]. 水利水电科技进展, 2017, 37(3): 55-60. DOI:10.3880/j.issn.10067647.2017.03.009.
He J, Hu X J, Yan X, et al. Experiments on temperature effect of hydraulic conductivity of compacted clay[J]. Advances in Science and Technology of Water Resources, 2017, 37(3): 55-60. DOI:10.3880/j.issn.10067647.2017.03.009. (in Chinese)
[49] 蔡光华, 陆海军, 刘松玉. 温度梯度下压实黏土的水热迁移规律和渗透特性[J]. 东北大学学报(自然科学版), 2017, 38(6): 874-879. DOI:10.3969/j.issn.1005-3026.2017.06.023.
Cai G H, Lu H J, Liu S Y. Moisture-heat migration laws and permeability of compacted clay under temperature gradient[J]. Journal of Northeastern University(Natural Science), 2017, 38(6): 874-879. DOI:10.3969/j.issn.1005-3026.2017.06.023. (in Chinese)
[50] Tasaka M. Thermal membrane potential and thermoosmosis across charged membranes[J]. Pure and Applied Chemistry, 1986, 58(12): 1637-1646. DOI:10.1351/pac198658121637.
[51] Tasaka M, Mizuta T, Sekiguchi O. Mass transfer through polymer membranes due to a temperature gradient[J]. Journal of Membrane Science, 1990, 54(1/2): 191-204. DOI:10.1016/s0376-7388(00)82079-7.
[52] Tasaka M, Urata T, Kiyono R, et al. Solvent transport across anion-exchange membranes under a temperature difference and an osmotic pressure difference[J]. Journal of Membrane Science, 1992, 67(1): 83-91. DOI:10.1016/0376-7388(92)87042-v.
[53] Gon�E7;alvès J, Trémosa J. Estimating thermo-osmotic coefficients in clay-rocks: Ⅰ. Theoretical insights[J]. Journal of Colloid and Interface Science, 2010, 342(1): 166-174. DOI:10.1016/j.jcis.2009.09.056.
[54] Barragán V M, Kjelstrup S. Thermo-osmosis in membrane systems: A review[J]. Journal of Non-Equilibrium Thermodynamics, 2017, 42(3): 217-236. DOI:10.1515/jnet-2016-0088.

备注/Memo

备注/Memo:
收稿日期: 2019-03-30.
作者简介: 张志红(1976—),女,博士,教授,zhangzh2002@126.com.
基金项目: 国家自然科学基金面上资助项目(51678012).
引用本文: 张志红,韩林,田改垒.饱和土体热-水-力-化全耦合一维溶质运移模型[J].东南大学学报(自然科学版),2019,49(6):1178-1186. DOI:10.3969/j.issn.1001-0505.2019.06.022.
更新日期/Last Update: 2019-11-20