参考文献/References:
[1] Wey M, Fang T. The effect of organic and inorganic chlorides on the formation of HCl with various hydrogen containing sources in a fluidized bed incinerator[J]. Environment International, 1995, 21(4): 423-431. DOI:10.1016/0160-4120(95)00036-k.
[2] Fujita S, Ogawa N, Yamasaki T, et al. A new sorbent,hydrogarnet, with purging HCl gas at high temperature[J]. Chemical Engineering Journal, 2004, 102(1): 99-104. DOI:10.1016/j.cej.2004.01.035.
[3] Fujita S, Suzuki K,Ohkawa M, et al. Reaction of hydrogrossular with hydrogen chloride gas at high temperature[J]. Chemistry of Materials, 2001, 13(8): 2523-2527. DOI:10.1021/cm000863r.
[4] 韩铮. 北方某生活垃圾焚烧厂大气污染防治措施及环境影响分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.
Han Z. Measures and environmental impact analysis for prevention and control of air pollution in a domestic waste incineration plant in the north[D]. Harbin: Harbin Institute of Technology, 2018.(in Chinese)
[5] 丁卫科, 段钰锋, 张君, 等. 低温等离子改性复合钙基吸附剂烟气脱硫实验研究[J]. 化工进展, 2017, 36(3): 1107-1112. DOI:10.16085/j.issn.1000-6613.2017.03.045.
Ding W K, Duan Y F, Zhang J, et al. Experimental study on desulfurization from flue gas by calcium-based composite sorbent with non-thermal plasma treated[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 1107-1112. DOI:10.16085/j.issn.1000-6613.2017.03.045. (in Chinese)
[6] 白李一, 段钰锋, 丁卫科, 等. 低温等离子强化复合钙基吸附剂脱汞实验研究[J]. 中国环境科学, 2018, 38(4): 1280-1286. DOI:10.19674/j.cnki.issn1000-6923.2018.0151.
Bai L Y, Duan Y F, Ding W K, et al. Experimental study of enhancement of demercuration from flue gas by calcium-based composite sorbent with non-thermal plasma treated[J]. China Environmental Science, 2018, 38(4): 1280-1286. DOI:10.19674/j.cnki.issn1000-6923.2018.0151. (in Chinese)
[7] Addink R, Bakker W C M, Olie K. Influence of HCl and Cl2 on the formation of polychlorinated dibenzo-p-dioxins/dibenzofurans in a carbon/fly ash mixture[J]. Environmental Science & Technology, 1995, 29(8): 2055-2058. DOI:10.1021/es00008a026.
[8] Chyang C, Han Y L, Zhong Z C. Study of HCl absorption by CaO at high temperature[J]. Energy & Fuels, 2009, 23(8): 3948-3953. DOI:10.1021/ef900234p.
[9] Daoudi M, Walters J K. A thermogravimetric study of the reaction of hydrogen chloride gas with calcined limestone: Determination of kinetic parameters[J]. The Chemical Engineering Journal, 1991, 47(1): 1-9. DOI:10.1016/0300-9467(91)85001-c.
[10] Daoudi M, Walters J K. The reaction of HCl gas with calcined commercial limestone particles: The effect of particle size[J]. The Chemical Engineering Journal, 1991, 47(1): 11-16. DOI:10.1016/0300-9467(91)85002-d.
[11] 王蕊. 氧化钙干法增湿法脱除HCl的机理研究[J]. 工程热物理学报, 2013, 34(3): 554-557.
Wang R. The reaction mechanism of HCl removal by CaO dry process with humidification[J]. Journal of Engineering Thermophysics, 2013, 34(3): 554-557.(in Chinese)
[12] 王婷, 金保昇, 裴海鹏, 等. 稻秸成型燃料流化床气化炉内CaO脱氯实验研究[J]. 化工进展, 2017, 36(3): 893-899. DOI:10.16085/j.issn.1000-6613.2017.03.017.
Wang T, Jin B S, Pei H P, et al. Experimental study on the CaO dechlorination in the rice straw briquette fluidized-bed gasifier[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 893-899. DOI:10.16085/j.issn.1000-6613.2017.03.017. (in Chinese)
[13] 刘金生, 陈江. 典型村镇垃圾燃烧、脱氯特性及机理研究[J]. 当代化工, 2011, 40(4): 336-339. DOI:10.13840/j.cnki.cn21-1457/tq.2011.04.032.
Liu J S, Chen J. Experimental study on combustion and dechlorination of village solid waste[J]. Contemporary Chemical Industry, 2011, 40(4): 336-339. DOI:10.13840/j.cnki.cn21-1457/tq.2011.04.032. (in Chinese)
[14] Shemwell B, Levendis Y A, Simons G A. Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents[J]. Chemosphere, 2001, 42(5/6/7): 785-796. DOI:10.1016/s0045-6535(00)00252-6.
[15] Zhao Z, Wang D, Wang Q, et al. Quantum chemical study on thermal decomposition mechanism of calcium carbonate[J]. Journal of Theoretical and Computational Chemistry, 2013, 12(6): 1350049. DOI:10.1142/s0219633613500491.
[16] Bian H, Xu B, Zhang H H, et al. Theoretical study on the atmospheric reaction of CH3SH with O2[J]. International Journal of Quantum Chemistry, 2019, 119(5): e25822. DOI:10.1002/qua.25822.
[17] Xu C, Wang C Y, Li B, et al. Theoretical study on the reaction mechanism of OH radical with Z(E)-CF3CH CHF[J]. Physical Chemistry Chemical Physics, 2019, 21(3): 1367-1374. DOI:10.1039/c8cp06647g.
[18] Hu H Y, Dibble T S. Quantum chemistry, reaction kinetics, and tunneling effects in the reaction of methoxy radicals with O2[J]. The Journal of Physical Chemistry A, 2013, 117(51): 14230-14242. DOI:10.1021/jp409105q.
[19] Zhang L Z, Lu Y Q, Rostam-Abadi M. Sintering of calcium oxide(CaO)during CO2 chemisorption: A reactive molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2012, 14(48): 16633. DOI:10.1039/c2cp42209c.
[20] Wang N N, Feng Y C, Guo X, et al. Insights into the role of H2O in the carbonation of CaO nanoparticle with CO2[J]. The Journal of Physical Chemistry C, 2018, 122(37): 21401-21410. DOI:10.1021/acs.jpcc.8b05517.
[21] Han S S, Choi S, van Duin A C T. Molecular dynamics simulations of stability of metal-organic frameworks against H2O using the ReaxFF reactive force field[J]. Chemical Communications, 2010, 46(31): 5713. DOI:10.1039/c0cc01132k.
[22] Lu X, Wang X L, Li Q M, et al. A ReaxFF-based molecular dynamics study of the pyrolysis mechanism of polyimide[J]. Polymer Degradation and Stability, 2015, 114: 72-80. DOI:10.1016/j.polymdegradstab.2015.02.004.
[23] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision D.01[R]. Wallingford, CT, USA:Gaussian, Inc., 2013.
[24] Gonzalez C, Schlegel H B. Reaction path following in mass-weighted internal coordinates[J]. The Journal of Physical Chemistry, 1990, 94(14): 5523-5527. DOI:10.1021/j100377a021.
[25] Lu T, Chen F W. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. DOI:10.1002/jcc.22885.
[26] 卢天, 陈沁雪. 通过价层电子密度分析展现分子电子结构[J]. 物理化学学报, 2018, 34(5): 503-513.
Lu T, Chen Q X. Revealing molecular electronic structure via analysis of valence electron density[J]. Acta Physico-Chimica Sinica, 2018, 34(5): 503-513.(in Chinese)
[27] Niu W X, Zhang H, Li P, et al. Gas-phase ammonia activation by Th, Th+, and Th2+: Reaction mechanisms, bonding analysis, and rate constant calculations[J]. International Journal of Quantum Chemistry, 2015, 115(1): 6-18. DOI:10.1002/qua.24753.
[28] Eyring H. The activated complex and the absolute rate of chemical reactions[J]. Chemical Reviews, 1935, 17(1): 65-77. DOI:10.1021/cr60056a006.
[29] Wigner E.Über das überschreiten von potentialschwellen bei chemischen reaktionen[J]. Zeitschrift Für Physikalische Chemie, 1932, 19B(1): 203-216. DOI:10.1515/zpch-1932-1920.
[30] Gullett B K, Jozewicz W, Stefanski L A. Reaction kinetics of calcium-based sorbents with hydrogen chloride[J]. Industrial & Engineering Chemistry Research, 1992, 31(11): 2437-2446. DOI:10.1021/ie00011a005.
[31] Li M S, Shaw H, Yang C L. Reaction kinetics of hydrogen chloride with calcium oxide by Fourier transform infrared spectroscopy[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1898-1902. DOI:10.1021/ie990628m.
[32] Mura G,Lallai A. On the kinetics of dry reaction between calcium oxide and gas hydrochloric acid[J]. Chemical Engineering Science, 1992, 47(9/10/11): 2407-2411. DOI:10.1016/0009-2509(92)87068-2.
[33] 万旦. 高温下氧化钙脱除氯化氢研究[D]. 武汉: 华中科技大学, 2013.
WanD. Study of HCI absorption by CaO at high temperature[D]. Wuhan: Huazhong University of Science and Technology, 2013.(in Chinese)
[34] Chenoweth K,van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053. DOI:10.1021/jp709896w.
[35] van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. DOI:10.1021/jp004368u.
[36] Psofogiannakis G M, McCleerey J F, Jaramillo E, et al. ReaxFF reactive molecular dynamics simulation of the hydration of Cu-SSZ-13 zeolite and the formation of Cu dimers[J]. The Journal of Physical Chemistry C, 2015, 119(12): 6678-6686. DOI:10.1021/acs.jpcc.5b00699.
[37] 王蕊, 王贵全, 田君国, 等. 水蒸气存在下氧化钙脱氯性能的实验研究[J]. 工程热物理学报, 2010, 31(3): 519-522.
Wang R, Wang G Q, Tian J G, et al. An experimental investigation on the effect of steam to hcl removal capability by CaO[J]. Journal of Engineering Thermophysics, 2010, 31(3): 519-522.(in Chinese)
[38] Duo W, Kirkby N F, Seville J P K, et al. Kinetics of HCl reactions with calcium and sodium sorbents for IGCC fuel gas cleaning[J]. Chemical Engineering Science, 1996, 51(11): 2541-2546. DOI:10.1016/0009-2509(96)00111-x.
[39] Weinell C E, Jensen P I, Dam-Johansen K, et al. Hydrogen chloride reaction with lime and limestone: Kinetics and sorption capacity[J]. Industrial & Engineering Chemistry Research, 1992, 31(1): 164-171. DOI:10.1021/ie00001a023.
[40] 王恺, 钟文琪, 曹俊, 等. CaO中高温脱除HCl的特性试验研究[J]. 东南大学学报(自然科学版), 2014, 44(3): 591-597.
Wang K, Zhong W Q, Cao J, et al. Experimental study on HCl removal characteristics over CaO at moderate and high temperature[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(3): 591-597.(in Chinese)
[41] 曹俊, 王志飞, 钟文琪, 等. 类水滑石与常规吸附剂中高温脱除HCl实验研究[J]. 东南大学学报(自然科学版), 2014, 44(5): 963-967.
Cao J, Wang Z F, Zhong W Q, et al. Study on removal of HCl from flue gas at medium-high temperature[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(5): 963-967.(in Chinese)