[1]王闰林,段钰锋,耿新泽,等.75 t/h CFB燃煤锅炉烟道喷射吸附剂脱汞数值模拟[J].东南大学学报(自然科学版),2020,50(2):342-350.[doi:10.3969/j.issn.1001-0505.2020.02.019]
 Wang Runlin,Duan Yufeng,Geng Xinze,et al.Numerical simulation on sorbent injection into flue gas for mercury capture in 75 t/h CFB coal-fired boiler[J].Journal of Southeast University (Natural Science Edition),2020,50(2):342-350.[doi:10.3969/j.issn.1001-0505.2020.02.019]
点击复制

75 t/h CFB燃煤锅炉烟道喷射吸附剂脱汞数值模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第2期
页码:
342-350
栏目:
环境科学与工程
出版日期:
2020-03-20

文章信息/Info

Title:
Numerical simulation on sorbent injection into flue gas for mercury capture in 75 t/h CFB coal-fired boiler
作者:
王闰林1段钰锋1耿新泽1许一凡1陶君2谷小兵2王鹏3许忠3
1东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 2大唐环境产业集团股份有限公司, 北京 100097; 3南通苏润环保科技有限公司, 南通 226010
Author(s):
Wang Runlin1 Duan Yufeng1 Geng Xinze1 Xu Yifan1 Tao Jun2 Gu Xiaobing2 Wang Peng3 Xu Zhong3
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2Datang Environmental Industry Group Co., Ltd., Beijing 100097, China
3Nantong Surun Environmental Protection Technology Co., Ltd., Nantong 226010, China
关键词:
循环流化床锅炉 吸附剂 喷射脱汞 吸附模型 数值模拟
Keywords:
circulating fluidized bed boiler sorbent sorbent injection demercuration adsorption model numerical simulation
分类号:
X511
DOI:
10.3969/j.issn.1001-0505.2020.02.019
摘要:
建立了耦合外部传质、内部扩散和表面吸附过程的CFD燃煤烟气喷射脱汞数学模型,对一台75 t/h 循环流化床(CFB)燃煤锅炉尾部烟道喷射NH4Br改性稻壳焦吸附剂脱汞过程进行了数值模拟.预测了吸附剂喷射速度、吸附剂粒径对烟道内吸附剂气固混合均匀性、吸附剂截面覆盖率、停留时间和喷射脱汞效率的影响.模拟结果与现场试验结果相吻合,验证了模型和计算方法的正确性.结果表明,吸附剂喷射速度仅在喷射出口附近对烟道内气固混合均匀度产生较大影响,因此喷射速度不宜太高;随着吸附剂停留时间的延长,烟道截面的汞浓度分布趋于均匀,但在烟道转弯处会降低吸附剂与烟气的混合均匀度,因此应加装导流板;在整个喷射脱汞过程中,吸附剂粒径对吸附剂气固混合及脱汞效率都有较大影响,吸附剂粒径为50 μm时具有较高的脱汞效率.
Abstract:
A computational fluid dynamics(CFD)mercury removal prediction model for injecting sorbent into flue gas was established for coupling the external film mass transfer, mercury adsorption on the sorbent surface and internal mercury diffusion process. The numerical simulation of injecting NH4Br modified rice husk char into a 75 t/h circulating fluidized bed(CFB)utility boiler flue duct for mercury removal was conducted. The mixing uniformity between the sorbent and the flue gas in cross section of flue gas duct, the area coverage rate of the sorbent, residence time, and the injection demercuration efficiency affected by the sorbent injecting velocity and the sorbent size were predicted. The prediction result were in agreement with the experimental ones, verifying the validity of the models and the calculation approach. The results indicate that the sorbent injection velocity only exerts influence on the overall uniformity between the sorbent and the flue gas in the neighborhood around the sorbent nozzles, indicating that a high injection velocity is unnecessary. With the increase of sorbent residence time, mercury concentration on cross section of flue gas duct tends to uniform, while it turns to be worse at a bend, thus, a flow guide plate is suggested. In the whole process, the sorbent size has considerably impacts on the mixing homogeneity between the sorbent and the gas, and the demercuration efficiency. An optimal sorbent size of 50 μm is beneficial to the demercuration efficiency.

参考文献/References:

[1] Hu Y, Cheng H F. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations[J]. Environmental Pollution, 2016, 218: 1209-1221. DOI:10.1016/j.envpol.2016.08.077.
[2] Zhao S L, Pudasainee D, Duan Y F, et al. A review on mercury in coal combustion process: Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Progress in Energy and Combustion Science, 2019, 73: 26-64. DOI:10.1016/j.pecs.2019.02.001.
[3] Zhao S L, Duan Y F, Yao T, et al. Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant[J]. Fuel, 2017, 199: 653-661. DOI:10.1016/j.fuel.2017.03.038.
[4] Yang Y J, Liu J, Wang Z, et al. Homogeneous and heterogeneous reaction mechanisms and kinetics of mercury oxidation in coal-fired flue gas with bromine addition[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4039-4049. DOI:10.1016/j.proci.2016.08.068.
[5] Liu Y, Bisson T M, Yang H Q, et al. Recent developments in novel sorbents for flue gas clean up[J]. Fuel Processing Technology, 2010, 91(10): 1175-1197. DOI:10.1016/j.fuproc.2010.04.015.
[6] Yang W, Liu Z Y, Xu W, et al. Removal of elemental mercury from flue gas using sargassum chars modified by NH4Br reagent[J]. Fuel, 2018, 214: 196-206. DOI:10.1016/j.fuel.2017.11.004.
[7] Shen B X, Tian L H, Li F K, et al. Elemental mercury removal by the modified bio-char from waste tea[J]. Fuel, 2017, 187: 189-196. DOI:10.1016/j.fuel.2016.09.059.
[8] Li G L, Wang S X, Wu Q R, et al. Mercury sorption study of halides modified bio-chars derived from cotton straw[J]. Chemical Engineering Journal, 2016, 302: 305-313. DOI:10.1016/j.cej.2016.05.045.
[9] Zhu C, Duan Y F, Wu C Y, et al. Mercury removal and synergistic capture of SO2/NO by ammonium halides modified rice husk char[J]. Fuel, 2016, 172: 160-169. DOI:10.1016/j.fuel.2015.12.061.
[10] Flora J R V, Hargis R A, O’Dowd W J, et al. Modeling sorbent injection for mercury control in baghouse filters: Ⅰ: Model development and sensitivity analysis[J]. Journal of the Air & Waste Management Association, 2003, 53(4): 478-488. DOI:10.1080/10473289.2003.10466171.
[11] Flora J R V, Hargis R A, O’Dowd W J, et al. Modeling sorbent injection for mercury control in baghouse filters: Ⅱ: Pilot-scale studies and model evaluation[J]. Journal of the Air & Waste Management Association, 2003, 53(4): 489-496. DOI:10.1080/10473289.2003.10466172.
[12] Scala F, Clack H L. Mercury emissions from coal combustion: Modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator[J]. Journal of Hazardous Materials, 2008, 152(2): 616-623. DOI:10.1016/j.jhazmat.2007.07.024.
[13] Zhong L C, Li W H, Zhang Y S, et al. Kinetic studies of mercury adsorption in activated carbon modified by iodine steam vapor deposition method[J]. Fuel, 2017, 188: 343-351. DOI:10.1016/j.fuel.2016.10.048.
[14] 郑逸武, 汤红健, 段钰锋, 等. 燃煤烟气活性炭喷射脱汞应用中给料喷嘴布置优化[J]. 燃烧科学与技术, 2017, 23(4): 339-343. DOI:10.11715/rskxjs.R201703018.
Zheng Y W, Tang H J, Duan Y F, et al. Optimal arrangement of feeding injector for coal-fired flue gas mercury control by ACI[J]. Journal of Combustion Science and Technology, 2017, 23(4): 339-343. DOI:10.11715/rskxjs.R201703018. (in Chinese)
[15] Zhou W, Eggenspieler G, Rokanuzzaman A, et al. Prediction of activated carbon injection performance for mercury capture in a full-scale coal-fired boiler[J]. Industrial & Engineering Chemistry Research, 2010, 49(8): 3603-3610. DOI:10.1021/ie901967p.
[16] 朱彬彬. 50 MW燃煤电厂磁珠喷射脱汞模拟及系统方案设计研究[D]. 武汉: 华中科技大学, 2018.
  Zhu B B.Study on injection simulation and system design of mercury removal with magnetospheres sorbent in 50mw coal-fired unit[D]. Wuhan: Huazhong University of Science and Technology, 2018.(in Chinese)
[17] Scala F. Modeling mercury capture in coal-fired power plant flue gas[J]. Industrial & Engineering Chemistry Research, 2004, 43(10): 2575-2589. DOI:10.1021/ie034143g.
[18] Scala F. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 1. in-duct removal[J]. Environmental Science & Technology, 2001, 35(21): 4367-4372. DOI:10.1021/es010065h.
[19] Scala F. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal[J]. Environmental Science & Technology, 2001, 35(21): 4373-4378. DOI:10.1021/es010066+.
[20] Baetens K, Nuyttens D, Verboven P, et al. Predicting drift from field spraying by means of a 3D computational fluid dynamics model[J]. Computers and Electronics in Agriculture, 2007, 56(2): 161-173. DOI:10.1016/j.compag.2007.01.009.
[21] Meserole F B, Chang R, Carey T R, et al. Modeling mercury removal by sorbent injection[J]. Journal of the Air & Waste Management Association, 1999, 49(6): 694-704. DOI:10.1080/10473289.1999.10463836.
[22] 任建莉, 周劲松, 骆仲泱, 等. 汞吸附过程的试验研究和数学模型[J]. 中国电机工程学报, 2006, 26(11): 1-6. DOI:10.3321/j.issn:0258-8013.2006.11.001.
Ren J L, Zhou J S, Luo Z Y, et al. Fixed-bed experiments and mathematical modeling for adsorption of mercury vapors[J]. Proceedings of the CSEE, 2006, 26(11): 1-6. DOI:10.3321/j.issn:0258-8013.2006.11.001. (in Chinese)
[23] 周强, 段钰锋, 洪亚光, 等. 活性炭喷射脱汞实验研究和预测模型[J]. 东南大学学报(自然科学版), 2013, 43(6): 1258-1263. DOI:10.3969/j.issn.1001-0505.2013.06.024.
Zhou Q, Duan Y F, Hong Y G, et al. Experimental study on mercury removal by activated carbon injection and predictive model[J].Journal of Southeast University(Natural Science Edition), 2013, 43(6): 1258-1263. DOI:10.3969/j.issn.1001-0505.2013.06.024. (in Chinese)
[24] Ho T C, Kobayashi N, Lee Y K, et al. Modeling of mercury sorption by activated carbon in a confined, a semi-fluidized, and a fluidized bed[J]. Waste Management, 2002, 22(4): 391-398. DOI:10.1016/s0956-053x(02)00021-1.
[25] Zhao B T, Zhang Z X, Jin J, et al. Simulation of mercury capture by sorbent injection using a simplified model[J]. Journal of Hazardous Materials, 2009, 170(2/3): 1179-1185. DOI:10.1016/j.jhazmat.2009.05.095.
[26] 毛剑宏, 蒋新伟, 钟毅, 等. 变截面倾斜烟道导流板对AIG入口流场的影响[J]. 浙江大学学报(工学版), 2011, 45(8): 1453-1457. DOI:10.3785/j.issn.1008-973X.2011.08.021.
Mao J H, Jiang X W, Zhong Y, et al. The effect of splitters layout at variable cross-section inclined flue on AIG inlet flow field[J]. Journal of Zhejiang University(Engineering Science), 2011, 45(8): 1453-1457. DOI:10.3785/j.issn.1008-973X.2011.08.021. (in Chinese)
[27] 洪亚光, 段钰锋, 朱纯, 等. 高硫石油焦喷射脱汞实验研究[J]. 工程热物理学报, 2014, 35(7): 1439-1442.
  Hong Y G, Duan Y F, Zhu C, et al. Investigation ofinjecting high-sulfur petroleum coke for mercury adsorption[J]. Journal of Engineering Thermophysics, 2014, 35(7): 1439-1442.(in Chinese)
[28] 耿新泽, 黄天放, 段钰锋, 等. 0.3MW(th)CFB锅炉烟道喷射生物质活性炭脱汞试验研究[J]. 中国电机工程学报, 2019, 39(9): 2560-2569. DOI:10.13334/j.0258-8013.pcsee.190341.
Geng X Z, Huang T F, Duan Y F, et al. Experiment study on mercury removal by injecting biomass based activated carbon into flue gas duct of 0.3MW(th)CFB boiler[J]. Proceedings of the CSEE, 2019, 39(9): 2560-2569. DOI:10.13334/j.0258-8013.pcsee.190341. (in Chinese)
[29] 姚婷, 洪亚光, 段钰锋, 等. KI改性凹凸棒管道喷射脱汞实验研究[J]. 中国电机工程学报, 2015, 35(22): 5787-5793. DOI:10.13334/j.0258-8013.pcsee.2015.22.013.
Yao T, Hong Y G, Duan Y F, et al. Experimental study on mercury removal by duct injection with KI-impregnated attapulgite[J]. Proceedings of the CSEE, 2015, 35(22): 5787-5793. DOI:10.13334/j.0258-8013.pcsee.2015.22.013. (in Chinese)
[30] Lee S S, Lee J Y, Keener T C. Novel sorbents for mercury emissions control from coal-fired power plants[J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39(2): 137-142. DOI:10.1016/j.jcice.2007.12.006.
[31] 鲁晟, 姚德飞. 燃煤电厂烟气中颗粒物粒径分布特征研究[J]. 环境污染与防治,2010, 32(8): 62-65. DOI:10.3969/j.issn.1001-3865.2010.08.015.
Lu S, Yao D F. Study on emissions characteristics of particles in coal-burning power plant[J].2010,32(8): 62-65. DOI:10.3969/j.issn.1001-3865.2010.08.015. (in Chinese)

相似文献/References:

[1]佘敏,段钰锋,朱纯,等.CO2/H3PO4活化与NH4Br改性稻壳焦的脱汞性能实验研究[J].东南大学学报(自然科学版),2014,44(2):321.[doi:10.3969/j.issn.1001-0505.2014.02.017]
 She Min,Duan Yufeng,Zhu Chun,et al.Experimental study on mercury adsorption performances of rice husk chars activated by CO2/H3PO4 and modified by NH4Br[J].Journal of Southeast University (Natural Science Edition),2014,44(2):321.[doi:10.3969/j.issn.1001-0505.2014.02.017]
[2]刘炳坤,任家生,崔秀华,等.ZDB-150型闭循环氦致冷机低温泵的实验研究[J].东南大学学报(自然科学版),1980,10(2):14.[doi:10.3969/j.issn.1001-0505.1980.02.002]
 Liu Bing-kun,Ren Jia-sheng,Cui Xiu-hua,et al.An Experimental Study of ZDB-150 Type Cryogenic Vacuum Pump with Closed-Cycle Refrigerator[J].Journal of Southeast University (Natural Science Edition),1980,10(2):14.[doi:10.3969/j.issn.1001-0505.1980.02.002]
[3]胡春红,曹俊,金保昇.3种类水滑石在中高温条件下的脱氯性能[J].东南大学学报(自然科学版),2016,46(4):782.[doi:10.3969/j.issn.1001-0505.2016.04.018]
 Hu Chunhong,Cao Jun,Jin Baosheng.Dechlorination performance of three hydrotalcite-like compounds in medium-high temperature[J].Journal of Southeast University (Natural Science Edition),2016,46(2):782.[doi:10.3969/j.issn.1001-0505.2016.04.018]

备注/Memo

备注/Memo:
收稿日期: 2019-09-15.
作者简介: 王闰林(1995—),男,硕士生;段钰锋(联系人),男,博士,教授,博士生导师,yfduan@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2016YFB0600203)、国家自然科学基金资助项目(51576044,51876039).
引用本文: 王闰林,段钰锋,耿新泽,等.75t/h CFB燃煤锅炉烟道喷射吸附剂脱汞数值模拟[J].东南大学学报(自然科学版),2020,50(2):342-350. DOI:10.3969/j.issn.1001-0505.2020.02.019.
更新日期/Last Update: 2020-03-20